About the course....

Course site: https://complexity-methods.github.io

Complexity Methods for Behavioural Science

Day 1: Intro to Complexity Science Intro Mathematics of Change **Basic Timeseries Analysis Basic Nonlinear Timeseries Analysis** Scaling

> **Behavioural Science Institute** Radboud University Nijmegen

Complexity Science

- Time! (Dynamics)
- Micro-Macro levels (Emergence)
- Self-Organization
- Scale invariance

Complexity Science

The scientific study of complex dynamical systems and networks

The many foundations of complexity science.

What is a system?

A system is an entity that can be described as a composition of components, according to one or more organising principles.

Continuous exchange of matter, energy, and information with the environment.

MICRO-MACRO levels Emergent patterns... swarms, schools

Glider gun creating "Gliders"

http://en.wikipedia.org/wiki/Gun_(cellular_automaton)

http://www.google.com/imgres?imgurl=http://www.projects-abroad.org/_photos/_global/photo-galleries/en-uk/cambodia/_global/large/school-of-fish.jpg&imgrefurl=http://www.projects-abroad.org/photo-galleries/?content=cambodia/ &usg=__xPQQdvCtelyjDbZZu79223c58A

Levels of Analysis: Micro - Macro

Forms and properties are emergent, not expected from components: 1 watermolecule does not possess the property "wet" Levels of Analysis: Micro - Macro

Levels of Analysis: Micro - Macro

Much to be filled in!

Emergence and Self-Organization: The life-cycle of *Dictyostelium*

1.Free living myxamoebae feed on bacteria and divide by fission.

2.When food is exhausted they aggregate to form a mound, then a multicellular slug.

3.Slug migrates towards heat and light.

4.Differentiation then ensues forming a

fruiting body, containing spores.

5.It all takes just 24 hrs.

6.Released spores form new amoebae.

Order parameter: Labelling states of a complex system

Phase Diagram & Order parameter

The order parameter is often a qualitative description of a macro state / global organisation of the system, conditional on the control parameters: H_2O : Ice (Solid), Water (Liquid), Steam (Vapour)

Disctyostelium: Aggregation (Mound), Migration (Slug), Culmination (Fruiting Body)

Dynamic Metaphor vs. Dynamic Measure

Metaphor: Measures: Sate Space / Order Parameter Attractor strength / Stability

Order parameter: the qualitatively different states

Control parameter: available food (actually concentration of a chemical that is released if they are starving)

Experiments:

Find out if the process is reversible... add food

perturb the system during the various phases...

the degrees of freedom of the individual components are increasingly constrained by the interaction:

free living amoebae... slug... immovable sporing pod

nb State space and Phase Space (or: Diagram) are different concepts, but often used interchangeably to describe a State Space... see slide 18

From Pattern Formation to Morphogenesis Multicellular Coordination in *Dictyostelium Discoideum* A.F.M. Marée (2000). PhD Thesis, UU.

Two-Scale Cellular Automata with Differential Adhesion

$$H_{\sigma} = \sum_{\text{all } \sigma, \sigma' \text{ neighbours}} \frac{J_{\tau_{\sigma}, \tau_{\sigma'}}}{2} + \sum_{\text{all } \sigma, \text{ me dium neighbours}} J_{\tau_{\sigma}, \tau_{\text{nedians}}} + \lambda (v_{\sigma} - V)^2, \quad (1.1)$$

Mathematical model of Dictyostelium

Spiral Breakup in Excitable Tissue due to Lateral Instability Marée, A. F. M., & Panlov, A.V. (1997). *Physical Review Letters,* 78,1819-1822.

Mathematical model of Dictyostelium

$$H_{\sigma} = \sum \frac{\int \text{coll,coll}}{2} + \sum \int \text{coll,medium} + \lambda(v - V)^2,$$

$$\frac{\partial c}{\partial t} = D_c \Delta c - f(c) - r,$$

$$\frac{\partial c}{\partial t} = c(c)(kc - r),$$

$$\frac{\partial c}{\partial t} = D_c \Delta c - d_c(c - c_0),$$

$$\int \text{ outside the amoebae}$$

$$\Delta H' = \Delta H - \mu(c_{\text{automaton}} - c_{\text{neighbour}}),$$

$$\frac{\partial c}{\partial t} = \frac{1}{2} + \sum \int \text{coll,medium} + \lambda(v - V)^2,$$

$$\frac{\partial c}{\partial t} = D_c \Delta c - d_c(c - c_0),$$

$$\int \text{ outside the amoebae}$$

(c)

Mathematical model of Dictyostelium

Mathematical model of Dictyostelium

ÿ

Mathematical model of Dictyostelium

ÿ

Termite cathedrals: Complex structures from simple rules

Termite cathedrals: Complex structures from simple rules

Fig. 14. Circular ring of building phases: each phase is dominated by a

Termite cathedrals: Complex structures from simple rules

Can be "explained" by (local) laws of thermodynamics... termite is a particle in a gradient field...

Dissipative systems: Systems that extract energy from the environment to maintain their internal structure, their internal complexity

Usually: many simple units interact in simple ways to create complex patterns at the global, macro level...

But termites are more complex than classical particles!

Two types of mathematical formalism:

Random events / processes Linear Efficient causes

component dominant dynamics

The Law of Large Numbers (Bernouiili, 1713) + The Central Limit Theorem (de Moivre, 1733) + The Gauss-Markov Theorem (Gauss, 1809) + Statistics by Intercomparison (Galton, 1875) =

Social Physics (Quetelet, 1840)

Collectively known as: The Classical Ergodic Theorems

Molenaar, P.C.M. (2008). On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on intra individual variation. *Developmental Psychobiology, 50*, 60-69

Random events / processes Deterministic events / processes Linear / Nonlinear Efficient causes / Circular causality

interaction dominant dynamics

Deterministic chaos (Lorenz, 1972) (complexity, nonlinear dynamics, predictability)

> **Takens' Theorem** (1981) (phase space reconstruction)

Systems far from thermodynamic equilibrium (Prigogine, & Stengers, 1984)

SOC / $\frac{1}{f^{\alpha}}$ **noise** (Bak, 1987) (self-organized criticality, interdependent measurements)

Fractal geometry (Mandelbrot, 1988) (self-similarity, scale free behaviour, infinite variance)

Aczel's Anti-Foundation Axiom (1988) (hyperset theory, circular causality, complexity analysis)

Two types of mathematical formalism for two types of systems

component dominant dynamics

Jakob Bernouiili (1654-1704): [The application of the Law of large numbers in chance theory] to predict the weather next month or year, predicting the winner of a game which depends partly on psychological and or physical factors or to the investigation of matters which depend on hidden causes, which can interact in a multitude of ways is completely futile!" Vervaet (2004)

A system is ergodic iff:

The averaged behaviour of an observed variable in a substantial ensemble of individuals (space-average) is expected to be equivalent to the average behaviour of an individual observed over a substantial amount of time (time average)

f.i. Throw 100 dice at once, and then throw 1 die 100 times in a row... The expected value will be similar for both measurements

interaction dominant dynamics

Deterministic chaos (Lorenz, 1972) (complexity, nonlinear dynamics, predictability)

> **Takens' Theorem** (1981) (phase space reconstruction)

Systems far from thermodynamic equilibrium (Prigogine, & Stengers, 1984)

SOC / $\frac{1}{f^{\alpha}}$ noise (Bak, 1987)

(self-organized criticality, interdependent measurements)

Fractal geometry (Mandelbrot, 1988) (self-similarity, scale free behaviour, infinite variance)

Aczel's Anti-Foundation Axiom (1988) (hyperset theory, circular causality, complexity analysis)

Complexity Methods for Behavioural Science

Day 1: Intro to Complexity Science Intro Mathematics of Change

The mathematics of change **Traditional: Functional relations**

The mathematics of change

Complex systems however:

- Consist of feedback loops
- Are recurrent / recursive
- Have history
- Are characterised by multiplicative interactions between components

The mathematics of change

Complex systems: Recurrent processes / Feedback

The mathematics of change

Complex systems: Recurrent processes / Feedback

Two Flavors: Flows & Maps

Dynamical models of psychological processes can be formulated in:

'Clock' time

Continuous System ~ Flow ~ (Differen*tial* equation) 'Metronome' time

Discrete System ... Map ... (Difference equation)

PARAMETERS & BIFURCATIONS

EXAMPLE 1: *The Linear Map* (Linear Growth)

1refs

The linear map

1refs

Dynamic Models: Parameter

The Linear Map ...

The (rate of) change of the state of a system is proportional to its current state:

$Y_i + 1 = a \cdot Y_i$

...Iteration...

The Linear Map

Iteration in general just means applying the function over and over again starting with an Y_0 initial value

> and subsequently to the result of the previous step

The Linear Map

$$\begin{aligned} \mathbf{Y}_{i+1} &= f(\mathbf{Y}_i) \\ i &= 0: \quad \mathbf{Y}_0 \rightarrow \mathbf{Y}_1 = f(\mathbf{Y}_0) \\ i &= 1: \quad \mathbf{Y}_1 \rightarrow \mathbf{Y}_2 = f(\mathbf{Y}_1) = f(f(\mathbf{Y}_0)) = f^2(\mathbf{Y}_0) \\ i &= 2: \quad \mathbf{Y}_2 \rightarrow \mathbf{Y}_3 = f(\mathbf{Y}_2) = \dots = f^3(\mathbf{Y}_0) \\ \vdots & \vdots \\ i &= n: \quad \mathbf{Y}_n \rightarrow \mathbf{Y}_{n+1} = f(\mathbf{Y}_n) = \dots = f^n(\mathbf{Y}_0) \end{aligned}$$

$$\begin{array}{ccc} Y_{i+1} = a \cdot Y_i \\ i = 0 & Y_0 \Rightarrow Y_1 = a \cdot Y_0 \\ i = 1 & Y_1 \Rightarrow Y_2 = a \cdot Y_1 = a \cdot a \cdot Y_0 = a^2 \cdot Y_0 \\ i = 2 & Y_2 \Rightarrow Y_3 = a \cdot Y_2 = \dots = a^3 \cdot Y_0 \\ \vdots & \vdots \\ i = n & Y_n \Rightarrow Y_{n+1} = a \cdot Y_n = \dots = a^{n+1} \cdot Y_0 \end{array}$$

¹refs

¹refs

¹refs

Some interesting differences compared to a linear model:

- Change of behaviour over iterations
 Simple model vs. "time" or "occasion" as a predictor
- Qualitatively different behaviour
 - One model produces at least four different types of behaviour
 - Not by adding predictors (components), by changing one parameter

PARAMETERS & BIFURCATIONS EXAMPLE 2:

The Logistic Map (restricted growth)

Logistic Map ...

¹refs

$$L_{i+1} = rL_i(1-L_i)$$

- Simplest nontrivial model often used as an introduction to DST and Chaos theory.
- Well-known model in ecology, physics, economics and social sciences.
- 'Styled' version of Van Geert's model for language growth. (Next meeting)

Logistic Map: Iteration

$$\begin{split} L_{i+1} &= r L_i (1 - L_i) \\ i &= 0: \quad L_0 \Rightarrow L_1 = r L_0 (1 - L_0) \\ i &= 1: \quad L_1 \Rightarrow L_2 = r L_1 (1 - L_1) \\ &= r r L_0 (1 - L_0) (1 - r L_0 (1 - L_0)) \\ &= -r^3 L_0^4 + 2r^3 L_0^3 - r^2 (1 + r) L_0^2 + r^2 L_0 \end{split}$$

Logistic Map: Parameter $L_{i+1} = rL_i(1-L_i)$ r = 3.30r = 0.90r = 3.52r = 1.90r = 3.90r = 2.90 L_0 small

An ecology of growth models? Same principle!

Basic Growth Models: Exponential + Restricted Growth

$$Population = rN \times \left(\frac{K - N}{K}\right)$$

$$Additional Parameter: Carrying Capacity$$

$$CognitiveGrowth = L_i(1 + r \times \frac{K - L_i}{K})$$

$$StylizedLogistic = rY_i \times \left(\frac{1 - Y_i}{1}\right)$$

Bifurcation Diagram

Bifurcation Diagram - Phase Diagram

A graphical representation of the possible states a dynamical system can end up in for different values of one or more parameters.

- The parameter is called the *control parameter*.
- The end states are called attractors.
- The change from one attractor (or set) to another is called a *bifurcation*.

End states are attractors in state space: Attractor types

State Space is an abstract space used to represent the behaviour of a system. Its dimensions are the variables of the system. Thus a point in the phase space defines a potential state of the system. The points actually achieved by a system depend on its iterative function and initial condition (starting point).

State space, Attractor types

"Saturn" attractor

Strange attractors are quasi periodic and bounded

Bottom line:

An attractor means a limited region of state space is visited. Not all DF actually available to the system are used.

http://www.da4ga.nl/wp-content/uploads/2012/03/PastedGraphic-2-1.jpg

Logistic Map: Bifurcation Diagram

Ÿ

Logistic Map: Bifurcation Diagram

Henon Map: Bifurcation Diagram

DETERMINISTIC CHAOS

CHAOS, TURBULENCE and other unsolved mysteries

"Turbulence is the most important unsolved problem of classical physics"

- Richard Feynman (1918 - 1988)

"I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment:

One is quantum electrodynamics, and the other is the turbulent motion of fluids.

And about the former I am rather optimistic."

- Horace Lamb (1849 - 1934)

Deterministic Chaos

The Art of Modeling Dynamic Systems

A Classification Scheme for Dynamic Systems 169

Deterministic Chaos

There is no real definition of chaos, but there are at least four ingredients:

The dynamics is **a-periodic** and **bounded**, and the system is **deterministic** and **sensitively depends on initial conditions**.

Deterministic Chaos... Paradox?

Something that is *deterministic*, is:

- Mathematically exact;
- Predictable.

Something that is 'chaotic', shows:

- Disorderly behaviour;
- Extreme sensitivity.

¹refs

CHAOS, TURBULENCE and other unsolved mysteries

Chaotic regime of the logistic map represented by the bifurcation diagram

Transitions between regimes:

- Order to Order
- Order to Chaos
- Chaos to Order
- Chaos to Chaos

Why this happens at these parameter settings is.... unknown

CHAOS, TURBULENCE and other unsolved mysteries

What can we say about chaos?

4. Sensitive dependence on initial conditions

The Lyapounov Exponent characterises (quantifies) the rate of separation of two infinitesimally close trajectories in state space.

Sensitive Dependence on Initial Conditions

What can we say about deterministic chaos and complexity?

 $X_0 = 0.01$

 $X_0 = 0.0100000001$

Tiny differences in initial conditions can yield diverging time-evolutions of system states

Lorenz observed this in his models of the upper atmosphere: The divergence was so extreme it resembled a butterfly flapping its wings -or notcould be the difference between weather developing as a hurricane or a summer breeze

Lorenz Attractor

$$\frac{dx}{dt} = a(y - x),$$
$$\frac{dy}{dt} = x(b - z) - y,$$
$$\frac{dz}{dt} = xy - cz.$$

Deterministic Chaos

Maps: linear map, 1D state space

Flows: Need 3 coupled ODEs (ordinary differential equations) Minimum is 3D state space

Lorenz about chaos, fractals, SOC, etc.: "Study of things that look random -but are not"

Double Pendulum - Small Displacement

Double Pendulum - Medium Displacement

Double Pendulum - Large Displacement

https://youtu.be/PrPYeu3GRLg?t=68