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Course site: https://complexity-methods.qgithub.io

Radboud University Nijmegen ;%;
v"""'.v &


https://complexity-methods.github.io

Complexity Methods for Behavioural Science

Day 1: Intro to Complexity Science
Intro Mathematics of Change
Basic Timeseries Analysis
Basic Nonlinear Timeseries Analysis
Scaling
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Radboud University Nijmegen %V



Complexity Science

Time! (Dynamics)

Micro-Macro levels (Emergence)
Self-Organization

Scale invariance

Earth 10’ m Landsat 65 km LES 10 km

Outline of the NWO strategic theme

Dynamics ofgcomplex systems

~ 1m-100pm ~mm
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Complexity Science

The scientific study of complex dynamical systems and networks

Systems Theory

Catastrophe Self-organised
Theory \ Criticality

Dynamical i i
Sstams S Nonlineary Dynamical

General Systems Systems Theory
Theory Fractal =Y Chaos Theory
Solid State/ Gsomstmy Social Networks
Condensed Matter g3 ; \ .
Physics Artifical Life Complexity
Evolut|onar Cellular Automata Sciences
B|O|ogy Emergent Computation
Cybemet'cs Evqutlonary Agent-based Models
Systems Artificial Societies
Autop0|e5|s
Informatlo Artificial Computational
ifieony Theo
Intelllgence ry

Algorithmic Neural Nets

Complexity /* Synergetics

Game Theory “Non-equilibrium
Thermodynamics

Biological Emergence

The many foundations of complexity science.

idiographic science!
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What is a system?

A system is an entity that can be described as a composition of
components, according to one or more organising principles.

Closed and Open Systems

Environment

System

Continuous exchange of matter, energy, and
information with the environment.
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MICRO-MACRO levels
Emergent patterns... swarms, schools

Glider gun creating “Gliders”

http://en.wikipedia.org/wiki/Gun_(cellular_automaton)
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Levels of Analysis: Micro - Macro

Forms and properties
are emergent,
not expected from
components:
1 watermolecule
does not possess the
property “wet”




Levels of Analysis: Micro - Macro

sz
|
P

Temperature, Volume,

Pressure, Energy, Entropy
‘ Thermodynamics

Laws of Mechanics

Interactions between and
structure of the particles

—>
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Levels of Analysis: Micro - Macro

Much to be filled in!

S -
I 7
-

Radboud University Nijmegen § %}
B

wet



Levels of Analysis: Micro - Macro

Emm)> Collective / Global

variables

Many coupled

‘ processes and

components

p—
|
s
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Emergence and Self-Organization:
The life-cycle of Dictyostelium

1.Free living myxamoebae feed on
bacteria and divide by fission.

2.When food is exhausted they aggregate
to form a mound, then a multicellular
slug.

3.Slug migrates towards heat and light.

4 .Differentiation then ensues forming a
fruiting body, containing spores.

5.It all takes just 24 hrs.

6.Released spores form new amoebae.

Radboud Uni ity Nij ’%
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Order parameter: Labelling states of a complex system

Forms are emergent,
self-organised:

Arise from interactions
between components
— reduction of degrees
of freedom
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Phase Diagram & Order parameter

A
\
\
- '.
2 | -
0 H :
o solid phase oo
o H compressible ' sypercritical fluid
;' liquid |
critical pressure | .
Por : 1t1 |
| liquid critical point
: phase
i
Po triple point | gaseous phase
vapour
critical
temperature {
Towp Teor Cell streams :
> Myxamoebae
Temperature

The order parameter is often a qualitative description of a macro state /
global organisation of the system, conditional on the control parameters:
H-0: Ice (Solid), Water (Liquid), Steam (Vapour)

Disctyostelium: Aggregation (Mound), Migration (Slug), Culmination (Fruiting Body)

https://youtu.be/Juz9pVVsmQQ 13

¥
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Dynamic Metaphor vs. Dynamic Measure

Metaphor: Sate Space / Order Parameter
Measures: Attractor strength / Stability

Order parameter: the qualitatively different states
Control parameter: available food (actually
concentration of a chemical that is released if they
are starving)

Experiments:
Find out if the process is reversible... add food

perturb the system during the various phases...

the degrees of freedom of the individual components
are increasingly constrained by the interaction:

&S

Cell streams = =

free living amoebae... slug... immovable sporing pod

nb State space and Phase Space (or: Diagram) are different concepts, but often used
interchangeably to describe a State Space... see slide 18
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From Pattern Formation to Morphogenesis
Multicellular Coordination in Dictyostelium Discoideum
A.F.M. Marée (2000). PhD Thesis, UU.

It,,T, o -
Hc = S T 1 S .IT.',Tmsuu t \' Yo — v 1 (ll)
all ¢, ¢’ neighbours =~ all o, e dium reighbours

Mathematical model of Dictyostelium
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Spiral Breakup in Excitable Tissue due to Lateral Instability
Marée, A. F. M., & Panlov, A.V. (1997). Physical Review Letters, 78,1819-1822.

T Ae — f(e) — g,

2 = Dage(eg)ke—g),

Mathematical model of Dictyostelium
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Mathematical model of Dictyostelium
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Mathematical model of Dictyostelium
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Mathematical model of Dictyostelium %
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Termite cathedrals: Complex structures from simple rules

Random System:

&

Linear System:

&

No competition between
equilibrium points

Nonlinear System:

one
equilibrium

point

&

Competition between
equilibrium points

muitiple
equilibrium
points
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Termite cathedrals: Complex structures from simple rules

<~ INSECT TRAJECTORIES
e EQUIPOTENTIAL LINES
«—— DIFFUSION GRADIENT

BUILDING
PILLARS

SUILDING

Fig. 14. Circular rine of hnildine nhases: each nhase 18 dommated hv ¢
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Termite cathedrals: Complex structures from simple rules

Can be “explained” by (local) laws of thermodynamics... termite is a particle in a
gradient field...

Dissipative systems: Systems that extract energy from the environment to
maintain their internal structure, their internal complexity

Usually: many simple units interact in simple ways to create complex patterns at
the global, macro level...

But termites are more complex than classical particles!
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Two types of mathematical formalism:

Random events / processes
Linear
Efficient causes

component dominant dynamics

The Law of Large Numbers gemouiii, 1713) +

The Central Limit Theorem (de moivre, 1733) +

The Gauss-Markov Theorem (Gauss, 1809) +

Statistics by Intercomparison (Gaiton, 1875) =
Social Physics (quetelet, 1840)

Collectively known as:
The Classical Ergodic Theorems

Random events / processes
Deterministic events / processes
Linear / Nonlinear
Efficient causes / Circular causality

interaction dominant dynamics

Deterministic chaos (Lorenz, 1972)
(complexity, nonlinear dynamics, predictability)

Takens’ Theorem (1981)
(phase space reconstruction)

Systems far from thermodynamic equilibrium
(Prigogine, & Stengers, 1984)
1
SOC / = noise (Bak, 1987)
(self-organized criticétlity, interdependent measurements)

Fractal geometry (Mandelbrot, 1988)
(self-similarity, scale free behaviour, infinite variance)

Aczel’s Anti-Foundation Axiom (1988)
(hyperset theory, circular causality, complexity analysis)

Radboud University Nijmegen %—



Two types of mathematical formalism for two types of systems

component dominant dynamics interaction dominant dynamics

Deterministic chaos (Lorenz, 1972)
(complexity, nonlinear dynamics, predictability)

Takens’ Theorem (1981)
(phase space reconstruction)

Systems far from thermodynamic equilibrium
(Prigogine, & Stengers, 1984)

1
SOC/ F noise (Bak, 1987)

(self-organized criticality, interdependent measurements)

Fractal geometry (Mandelbrot, 1988)
(self-similarity, scale free behaviour, infinite variance)

Aczel’s Anti-Foundation Axiom (1988)
(hyperset theory, circular causality, complexity analysis)
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Interaction dominant

dynamics
r
ta A A a
< L I —
'[c T A 4
L td v {V 4

Component dominant
dynamics

A —» B —» C

1

Behavior emerges from interaction between
many processes on different timescales in
body and environment

Behavior is the result of a linear arrangement
of a virtual architecture of cognitive
components and processes

Environment

Place of measurement
of efficient causes

4 A

Environmental factors,
@ Performance and perception

<—

Body

CNS

<—

- ———
o — -

A Cognitive \

{ components and b - ————l) CcIebellum, brainstem, neural

\ /
processes P

-~
h__-_‘

25

measures, Social interactions, ...

- J
4 )

Genetic, immunological, endocrine

N —— p——— S\/SteMS . Biophysical composition,

physiology, Organic chemistry, ...

N )
4 )

Structure and function of the cortex,

pathways. Neurochemistry, ...

NS /




Complexity Methods for Behavioural Science

Day 1: Intro to Complexity Science
Intro Mathematics of Change

Behavioural Science Institute
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The mathematics of change

Traditional: Functional relations

Y =f(X)
X Y
—L /

27 Radboud University Nijmegen %



The mathematics of change

Traditional: Functional relations

28 Radboud University Nijmegen ?%



The mathematics of change

Complex systems however:

e Consist of feedback loops

e Are recurrent / recursive

* Have history

* Are characterised by multiplicative interactions between components

Trefs
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The mathematics of change

Complex systems: Recurrent processes / Feedback

Y =£(Y)

30 Radboud University Nijmegen %



The mathematics of change

Complex systems: Recurrent processes / Feedback
Y O/’O

o{ﬁ/
i

Time series

/
/

time
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Two Flavors: Flows & Maps

Dynamical models of psychological processes can be
formulated in:

‘Clock’ time ‘Metronome’ time
Continuous System Discrete System
~ Flow ~ ... Map ...
(Differential equation) (Difference equation)

32 Radboud University Nijmegen %



PARAMETERS & BIFURCATIONS

EXAMPLE 1:
The Linear Map
(Linear Growth)

33 Radboud University Nijmegen 5%#



The linear map

Dynamic Models: Parameter

\A/ =fa(Y)

34 Radboud University Nijmegen %



The Linear Map ...

The (rate of) change of the state of a system is proportional to its

current state:

Yi+1 = a'yY,

...Iteration...

Trefs

35
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The Linear Map

Initial value:

)

_<

_<

/i~ =/ =/
_<

Iteration in general just means

applying the function
over and over again
starting with an
initial value

and subsequently
to the result of
the previous

step

Trefs

36

Radboud University Nijmegen %



The Linear Map

|+1 f(Y)
=0. Yo > Yq1=/(Yo)
=1 Y12 Y =1(Yq) =f(f/(Yo))=/2%(Yp)
=2 Y2_9Y3 =f(Yo) = ... = 13(Yp)

i=n: Yn > Yo =f(Yn) = ... = f7(Y)
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Linear Map: lteration with a parameter
Yieg =AY,

=0 Yo>Yi=a Yy
i = 1- Y19Y2=a'Y1=a d- YO a2 YO
i = - Y29Y3 a- Y2 .—a3'Y0

Yn > Y q=a Y, =...=aml-Y,

refs
38 Radboud University Nijmegen %



Linear Map: lteration with a Parameter

Yi+1 — d Y

D<a<1

a>1

a:

-1<a<0
a<-1
= —1

Y o nonspecific

39
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Linear Map: lteration with a Parameter

a=1.08
YO =5

Behavioral or Cognitive variable (a.u.)

100 |-

n
Q
I

Q
I

-50

| | |
5 10 15
Time (a.u.)

| |
30 35 40

Trefs

40
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Linear Map: lteration with a Parameter

a=0.8 T
YO =70

n
Q

o
I

Behavioral or Cognitive variable (a.u.)

_50 | | | | | | |
Y. = a- Y 5 10 15 20 25 30 35 40
|+ 1 Time (a.u.)
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Linear Map: lteration with a Parameter

a=1.00 hl
YO =50

Behavioral or Cognitive variable (a.u.)
n
Q

Q
I

_50 | | | | | | |
Y. — a . Y 5 10 15 20 25 30 35 40
|+ 1 Time (a.u.)

Trefs
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Linear Map: lteration with a Parameter

a=-1.08
YO =5

Behavioral or Cognitive variable (a.u.)

100

80 -

60 -

40 -

200

20

-40 -

-60

-80

-100 -

!
10

|
20
Time (a.u.)

!
25

1 |
30 35 40

Trefs

43
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Linear Map: lteration with a Parameter

a=-0.8
YO =70

Behavioral or Cognitive variable (a.u.)

100

80

60

40 |t

20

-20

-40

60 N

-80 |

-100 | | | | | | B

Y = a Y 10 15 20 25 30 35 40
1+ 1 Time (a.u.)
refs
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Linear Map: lteration with a Parameter

a=-1.00
Y0 =50

Behavioral or Cognitive variable (a.u.)

100

80

60

40

20

-20

-40

-60

-80

-100

l
10

|
20
Time (a.u.)

!
25

| |
30 35 40

Trefs

45
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Linear Map: lteration with a Parameter

Some interesting differences compared to a linear model:

* Change of behaviour over iterations
» Simple model vs. “time” or “occasion” as a predictor

e Qualitatively different behaviour
» One model produces at least four different types of behaviour

» Not by adding predictors (components), by changing one
parameter

Trefs
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PARAMETERS & BIFURCATIONS

EXAMPLE 2:

The Logistic Map
(restricted growth)

47 Radboud University Nijmegen é%y



Logistic Map ...
Livq = rLi(1-L)

e Simplest nontrivial model often used as an
introduction to DST and Chaos theory.

* \Well-known model in ecology, physics, economics
and social sciences.

e ‘Styled’ version of Van Geert's model for language
growth. (Next meeting)

48 Radboud University Nijmegen %



Logistic Map: Iteration

Livy = rLi(1-L5)

=00 Lo>Li=rLo(1-Ly)
=1. L1>Ly=rL;(1-L4)
=rrLo(1-Lg) (1—rLo(1-Ly) )

= —r3Ly*+ 2r3L3—r2(1+r)Ly2+ r2l,

49 Radboud University Nijmegen %



Logistic Map: Parameter

Li.q =rLi(1-L5)

r=0.90

r=1.90

r=2.90

r=3.30

r=3.52

r=3.90

L, small

50
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Logistic Map: Graphs L., =rL (1-L)

e
(o)}
T

o
&y

e
~

e
w

Behavioral or Cognitive variablg (a.u.

| | | | | | | | | | |
5 10 15 20 25 30 35 40 45 50 55 60
Time (a.u.)

Trefs
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An ecology of growth models?
Same principle!

Basic Growth Models: Exponential + Restricted Growth

K-N

POpulation — ]/'N)( ) Additional Parameter: Carrying Capacity
K
K-L
CognitiveGrowth = L (1 +r x = )

-,
|

StylizedLogistic =rY, ><(1 )

Radboud University Nijmegen § %’
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Bifurcation Diagram

53 Radboud University Nijmegen iTY:%



Bifurcation Diagram - Phase Diagram

A graphical representation of the possible
states a dynamical system can end up
In for different values of one or more
parameters.

* The parameter is called the control paramefter.
* The end states are called attractors.

 The change from one attractor (or set) to another is
called a bifurcation.

54 Radboud University Nijmegen %



End states are attractors In state space: Attractor types

State Space is an abstract space used to represent the behaviour of a system. Its dimensions are the
variables of the system. Thus a point in the phase space defines a potential state of the system. The points
actually achieved by a system depend on its iterative function and initial condition (starting point).

vvvvvv

Fixed point

xxxxxxxxx

\\\\\\

Discrete period 2
limit cycle

L L L T T

>3 Radboud University Nijmegen § %"
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State space, Attractor types

“Saturn”
attractor

Strange attractors
are quasi periodic
and bounded

Bottom line:

An attractor means
a limited region
of state space
IS visited.
Not all DF actually
available
to the system
are used.

http://www.da4ga.nl/wp-content/uploads/2012/03/PastedGraphic-2-1.jpg

56
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Logistic Map: Bifurcation Diagram

1

0.9}
0.8}
O -
0.6 -
0.5}
0.4

0.3

0.2

End state(s) >

01

0

I I I I I I I !
0 0.5 1 15 2 2.5 3 3.5 4

Parameter -

Trefs
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Logistic Map: Bifurcation Diagram

1.0
‘ = |
0.6 —
X —_
0.4 —
_| In the chaotic regime, the system will never return to
exactly the same value, the bands will become
02 -] almost black if we let the system run infinite time. It
will not fill the y-axis completely (e.g., not all df’s
— available to the system will be used). So it is an
attractor, but it is definitely a strange one...
0.0 I I I I I I I I I I I
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
I

http://upload.wikimedia.org/wikipedia/commons/7/7d/LogisticMap_BifurcationDiagram.png
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iagram

ion D

Bifurcat

Henon Map

1.5

1.4

1.3

1.2

1.1

http://upload.wikimedia.org/wikipedia/commons/c/cd/Henon_bifurcation_map_b%3D0.3.png

Radboud University Nijmegen §

60



DETERMINISTIC CHAOS
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CHAOS, TURBULENCE
and other unsolved mysteries

“Turbulence is the most important unsolved
problem of classical physics”

- Richard Feynman (1918 - 1988)

“I am an old man now, and when | die and go to
heaven there are two matters on which | hope for
enlightenment:

One is quantum electrodynamics,
and the other is the turbulent motion of fluids.

And about the former | am rather optimistic.”

- Horace Lamb (1849 - 1934)

Turbulent

A

Laminar

62
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Deterministic Chaos

The Art of Modeling Dynamic Systems A Classification Scheme for Dynamic Systems 169
Table 12-1. Summary of the Hierarchy of Dynamic Systems. oo =
Type Constraints Description ,\\
Zero  Absolute Constant state ' 8 1000 - / %
I  Analytic integrals Solvable dynamic system 7] \
II  Approximate analytic Amenable to perturbation ; %
integrals theory a Y
Il Quasi-deterministic; smooth  Chaotic dynamic system | 100 —
but erratic trajectory
IV Rigorously defined only by Turbulent/stochastic o . -
averages over time or g \\
state space W \
= 10 =
Table 12-2. A few examples of the types of dynamic systems. - \ \ \
Type Examples | \\ \\\
ype p e N \\\ N\

Zero  Images, gravity models, structurcs. I 100% Deterministic 100% Stochastic I
I  Gear trains, 2-body problem, physical pendulum MATHEMATICS

IV Quantu CIarcs, turoe T, S al mechanics Figure 12-1. Schematic representation of the Hierarchy of Dynamic Systems.

PAN;
&
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Deterministic Chaos

There is no real definition of chaos, but there are
at least four ingredients:

The dynamics is a-periodic and
bounded, and the system is
deterministic and sensitively
depends on initial conditions.

Trefs
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Deterministic Chaos... Paradox?

Something that is deterministic, Is:
» Mathematically exact,
* Predictable.

Something that is ‘chaotic’, shows:
» Disorderly behaviour;
» Extreme sensitivity.

65 Radboud University Nijmegen %



CHAOS, TURBULENCE
and other unsolved mysteries

Chaotic regime of the logistic map represented by the bifurcation diagram

Transitions between regimes: 1.0
- Order to Order . )
- Order to Chaos 06 —
- Chaos to Order x 4
- Chaos to Chaos 04 —
0.2 -
0.0 _ | | | | | | | | | | | | | | |

Why this happens at these parameter settings is.... unknown

Behavioural Science Institute %
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CHAOS, TURBULENCE
and other unsolved mysteries

What can we say about chaos?

4. Sensitive dependence on initial conditions

The Lyapounov Exponent characterises (quantifies) the rate of separation of two infinitesimally close trajectories in state
space.

X(9)
[\ AX(Z, 1)
/xtt)
<& i
A\ N Calculate if you have a model
xfo).?o) o May be experimentally accessible
X

<o Analytic techniques (in R) are available

Behavioural Science Institute %
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Sensitive Dependence on Initial Conditions

What can we say about deterministic chaos and complexity?

Xo = 0.01 Xo =0.01000000001

12

11— =

e T T T il T nh x T >_
L1 ; Nm,mi M ! ,M’, ‘MWI. %Wr Mt R #5 s
MTUPRGALN INIVEN 1*-; o e

0
105 9 1317 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 129 133 137 141 145 149 153 157 161 165 169 173 177 181 185 189 193 197 201 205 209 213 217 221 225 229 233 237 241 245 249 253 257 261 265 269 273 277 281 285 289 293 297 301
Stepi

Tiny differences in initial conditions can yield diverging time-evolutions of system states

Lorenz observed this in his models of the upper atmosphere:
The divergence was so extreme it resembled a butterfly flapping its wings -or not-
could be the difference between weather developing as a hurricane or a summer breeze

Behavioural Science Institute %
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LOre y4 Attractor @ — a(y - x), Deterministic Chaos

;Zt Maps: linear map, 1D state
space

—y=X(b—Z)_y9 P

dt

e Flows: Need 3 coupled ODEs
b P dz (ordinary differential equations)
Z2 Minimum is 3D state space

Lorenz about chaos, fractals, SOC, etc.:
“Study of things that look random -but are not’
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62 (Radians)

Double Pendulum - Small Displacement

t=0 seconds

0, (Radians)

2

1.91

0.57

I




6’2 (Radians)

Double Pendulum - Medium Displacement

t=0 seconds

91 (Radians)

2

1.91

0.57
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6’2 (Radians)

Double Pendulum - Large Displacement

t=0 seconds

91 (Radians)

2

1.91

0.571

I




Double Pendulum at t=0 seconds




https://youtu.be/PrPYeu3GRLg?t=68

Trefs
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