RECURRENCE **Q**UANTIFICATION **A**NALYSIS

auto-RQA of categorical & continuous time series

f.hasselman@pwo.ru.nl

STORY 1

"Jort en An vragen aan Jan of ze met de wandelwagen mogen rijden en het mag van Jan en ze gaan er in en ze rijden heel snel. Ze zien een boom en de wandelwagen gaat kapot. Ze komen weer bij. Jan maakt de wandelwagen weer"

MLU: 3.70 # woorden: 47

"Papa zit in de bank en papa werkt in de tuin die maakt een kar de kinderen. Papa maakt een kar van de kinderen en de kinderen en de kinderen tegen de boom en de kar is kapot en de kinderen huilen en de kinderen zijn blij"

Inter-rater reliability of "quality" is ok, but "why"?

Data from: Huijgevoort, M. A. E. V. (2008). Improving beginning literacy skills by means of an interactive computer environment (Doctoral dissertation). http://repository.ubn.ru.nl/bitstream/handle/2066/45170/45170 imprbelis.pdf

STORY 2

MLU: 3.68 # woorden: 47

Recurrence Quantification Analysis: Nominale Tijdseries

STORY 1

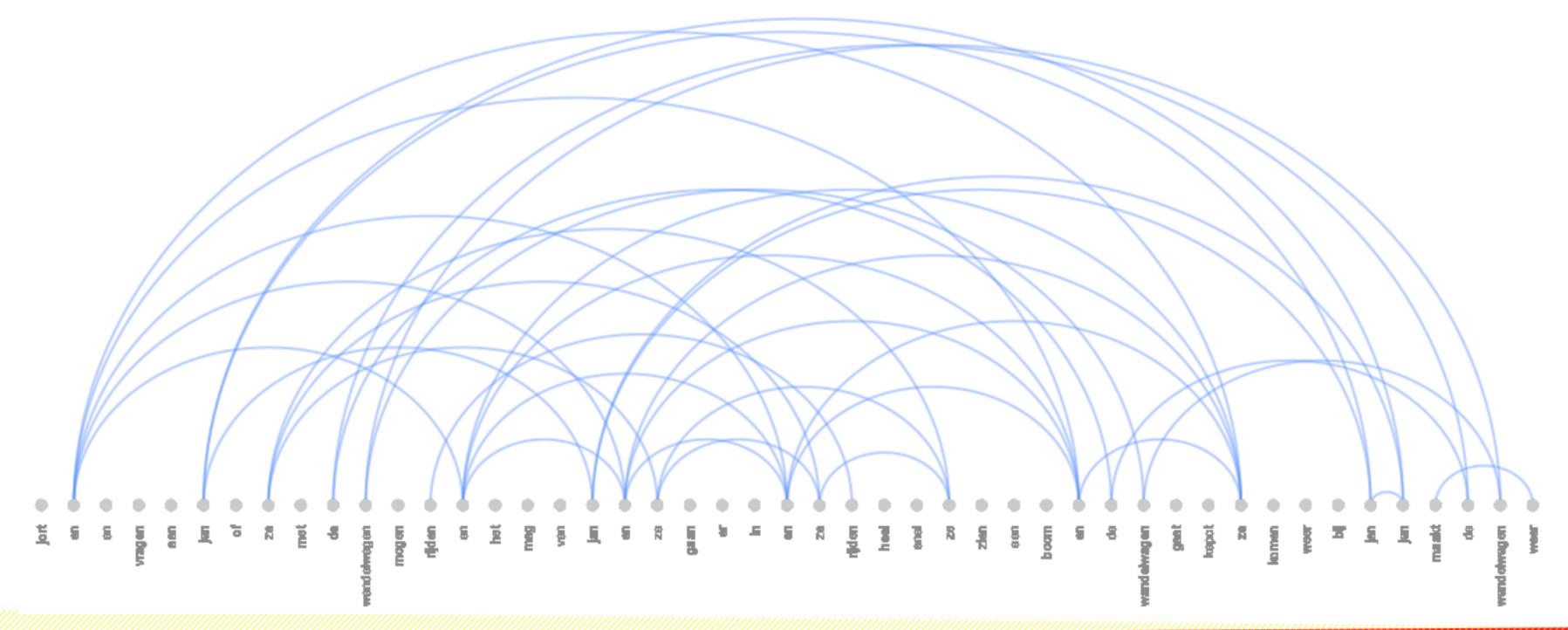
3

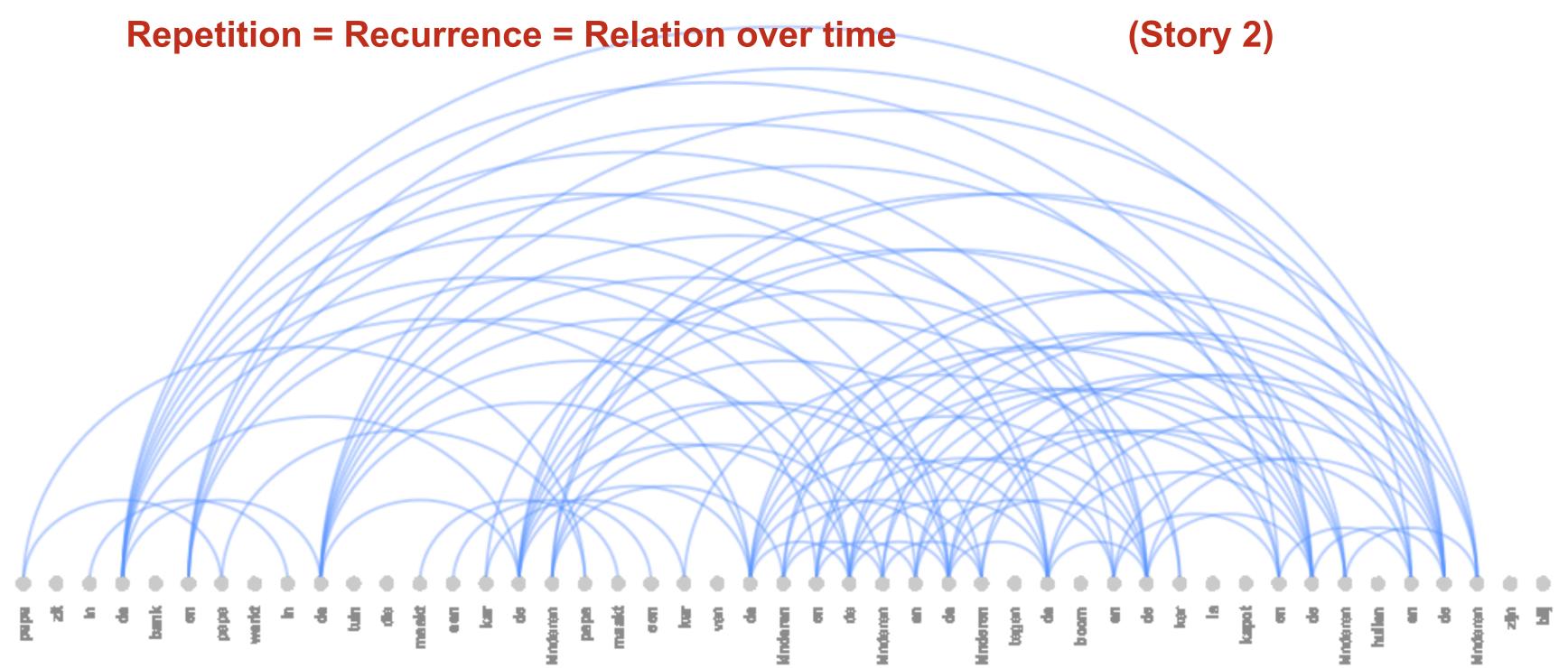


Data from: Huijgevoort, M. A. E. V. (2008). Improving beginning literacy skills by means of an interactive computer environment (Doctoral dissertation). http://repository.ubn.ru.nl/bitstream/handle/2066/45170/45170 imprbelis.pdf

STORY 2

Repetition = Recurrence = Relation over time

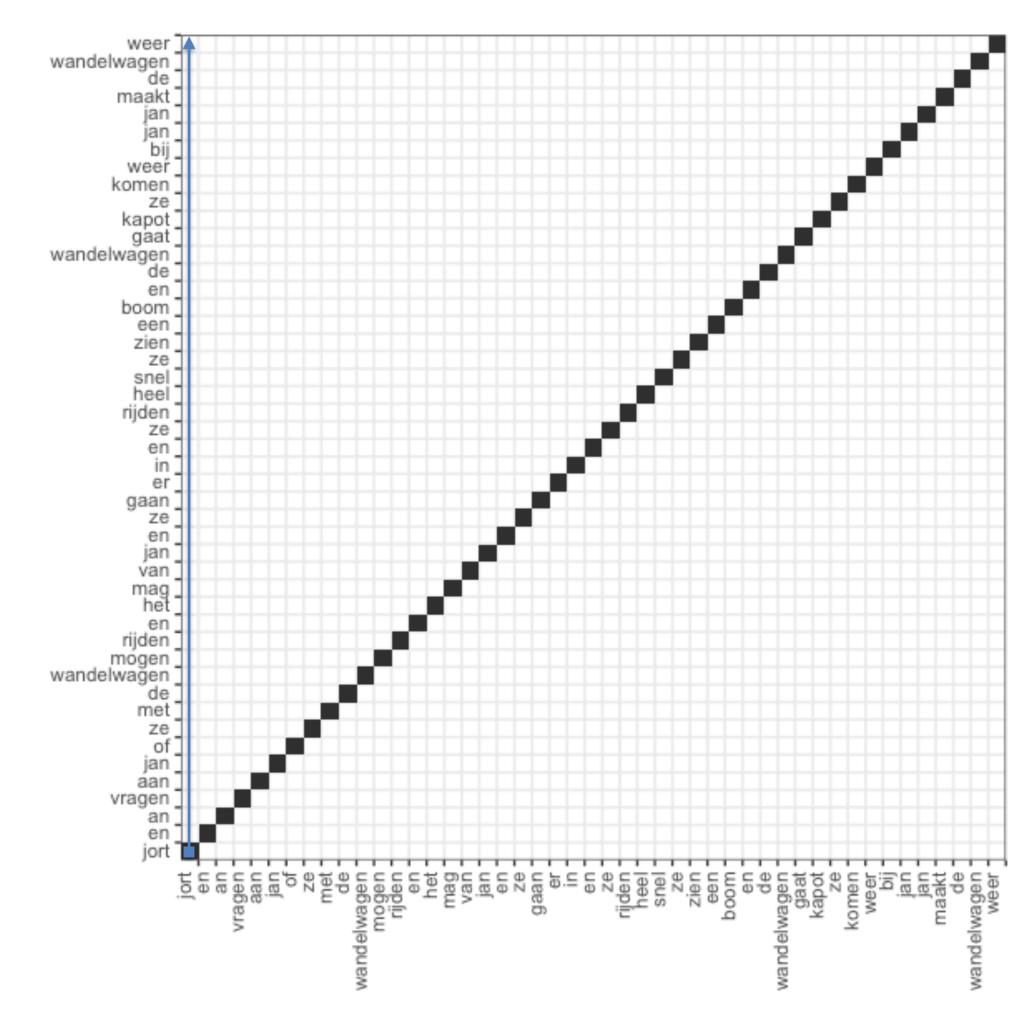




Recurrence Plot

Place a dot when a word is recurring

'jort' (0 keer)

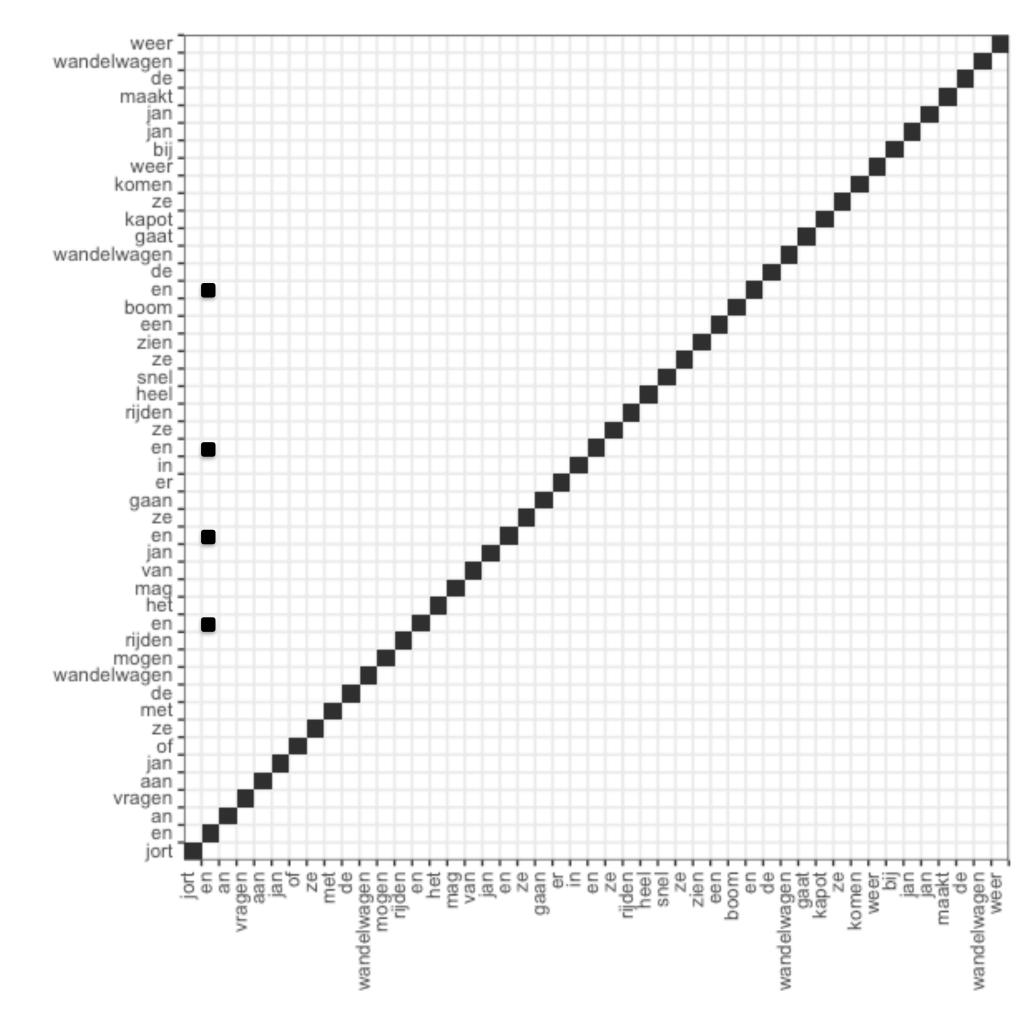


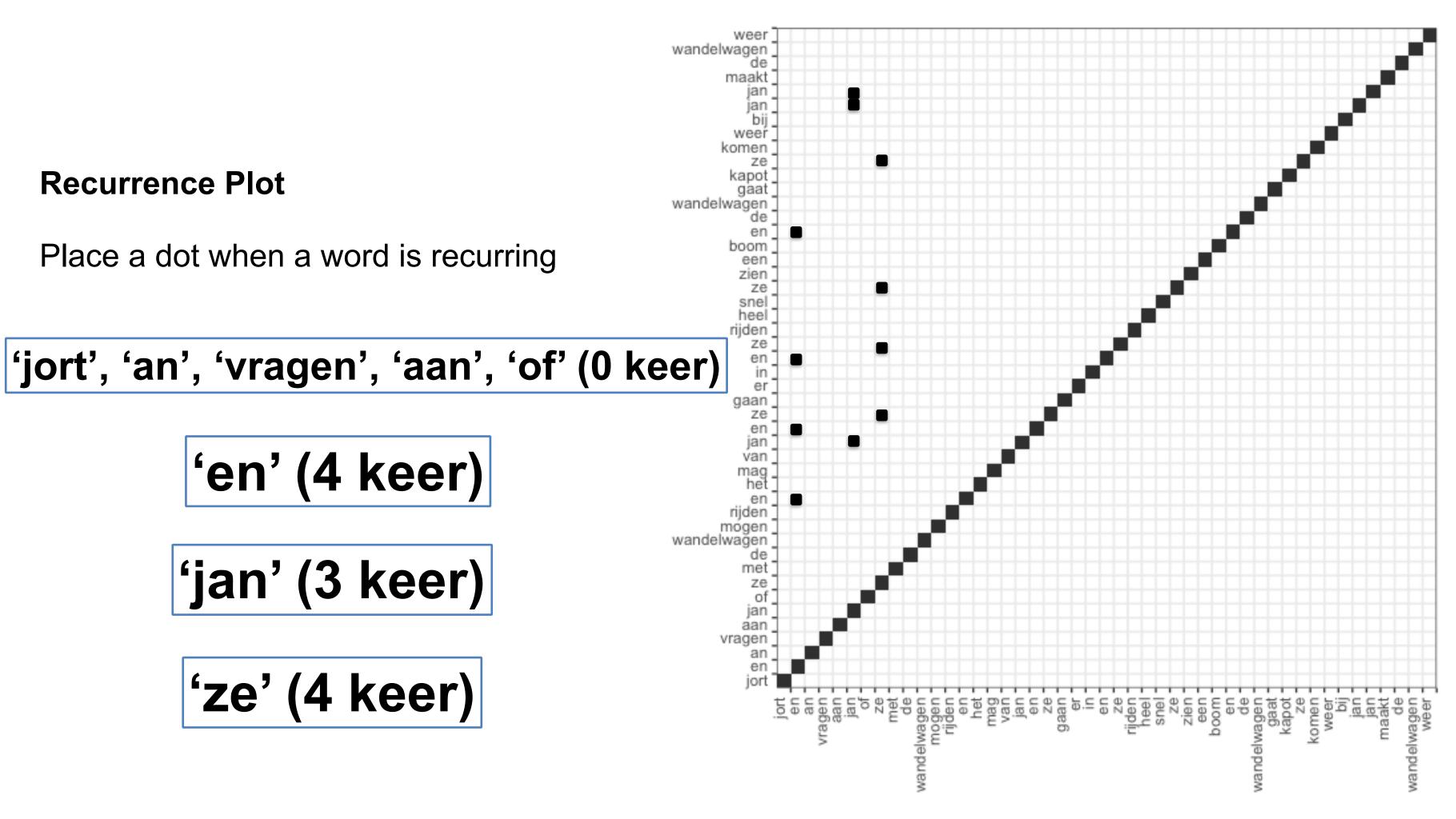
Recurrence Plot

Place a dot when a word is recurring

'jort' (0 keer)

'en' (4 keer)





Recurrence Matrix / Recurrence Plot

Recurrence Quantification Analysis

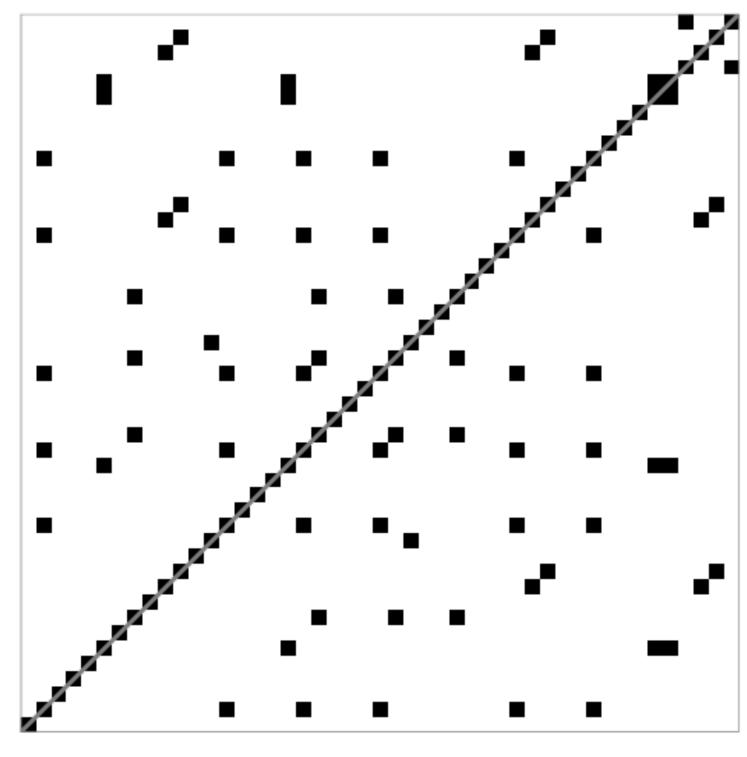
auto-Recurrence: Symmetric recurrence plot around the LOS (Line of Synchronisation)

Categorical (nominal): 1 point = repetition of a category

Quantify patterns of recurrences:

Recurrence Rate (RR): Proportion actual recurrent points on maximum possible recurrent point (minus the diagonal):

70 / (47² - 47) = 0.032 (3.2%)35 / ((47² - 47) / 2) = 0.032 (3.2\%)



Diagonal lines ➡ repetition of any pattern: "de wandelwagen" is recurring 2 times

Determinism (DET): proportion recurrent points that lie on a diagonal line

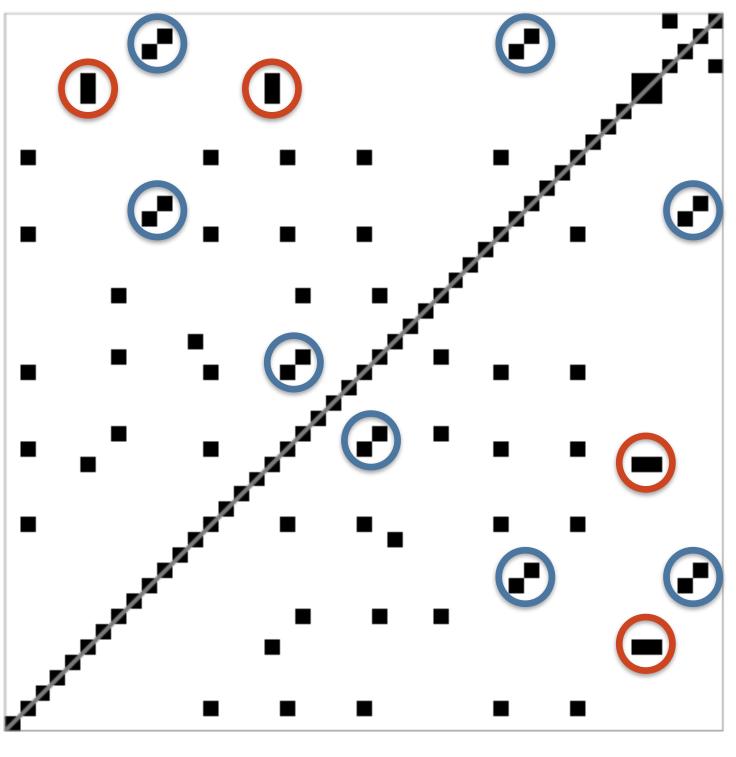
8 / 70 = 0.114 (11.4%) **4** / 35 = 0.114 (11.4%)

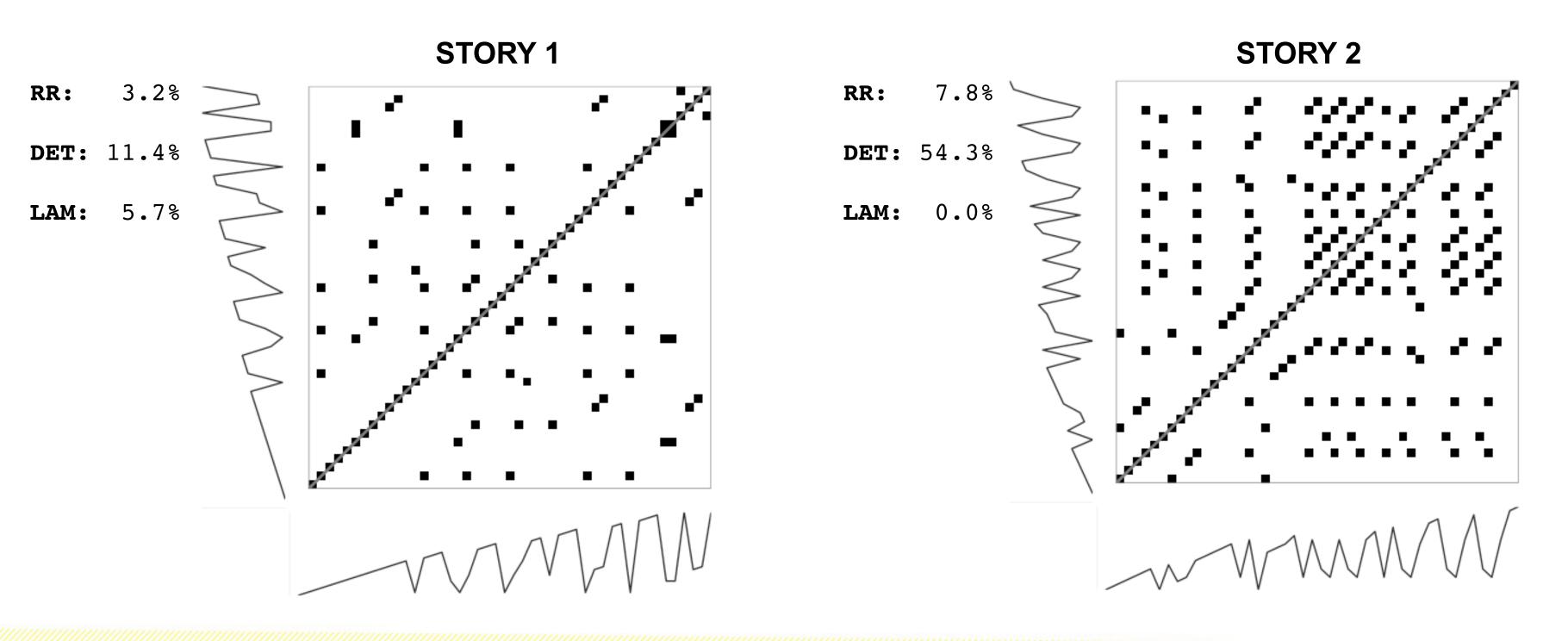
Vertical lines ➡ recurrence of exactly the same value: "jan jan"

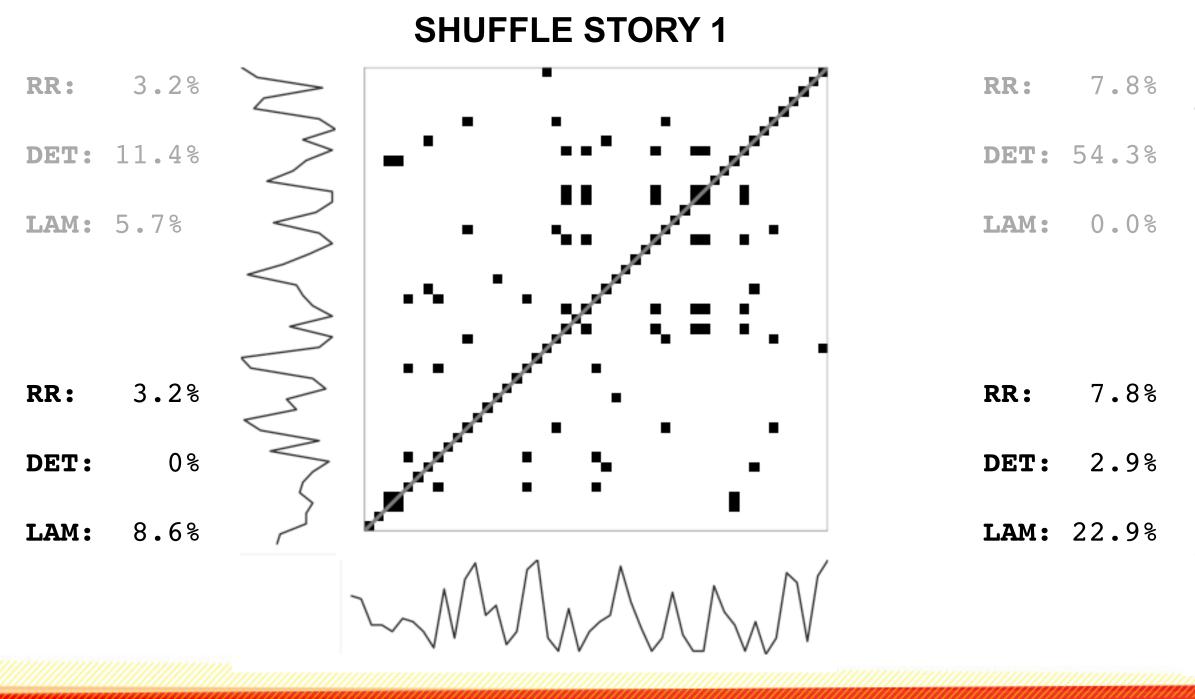
Laminarity (LAM): proportion recurrent points that lie on a vertical line

4 / 70 = .057 (5.7%) **2** / 35 = .057 (5.7%)

Recurrence Matrix / Recurrence Plot







SHUFFLE STORY 2

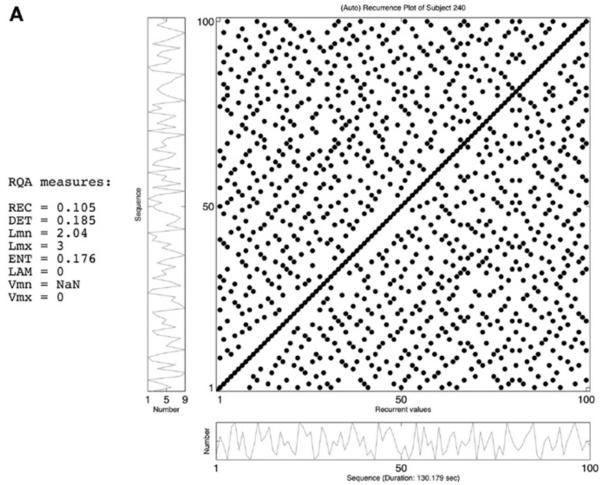
Executieve functions? RQA analysis of the RNG task

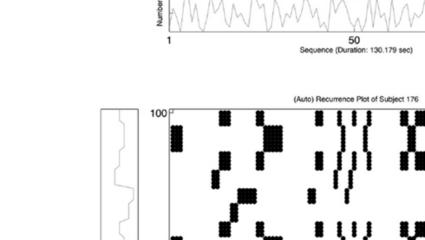
Oomens, W., Maes, J. H., Hasselman, F., & Egger, J. I. (2015). A time series approach to random number generation: using recurrence quantification analysis to capture executive behavior. Frontiers in Human Neuroscience, 9

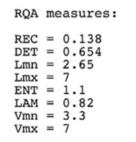
Executive control:

"be as random as you can"

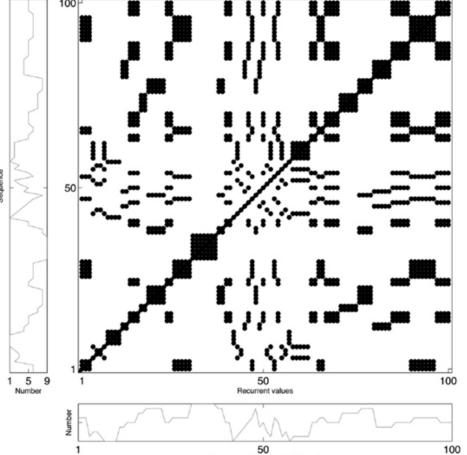
Vignette: R manual or: https://fredhasselman.github.io/casnet/index.html



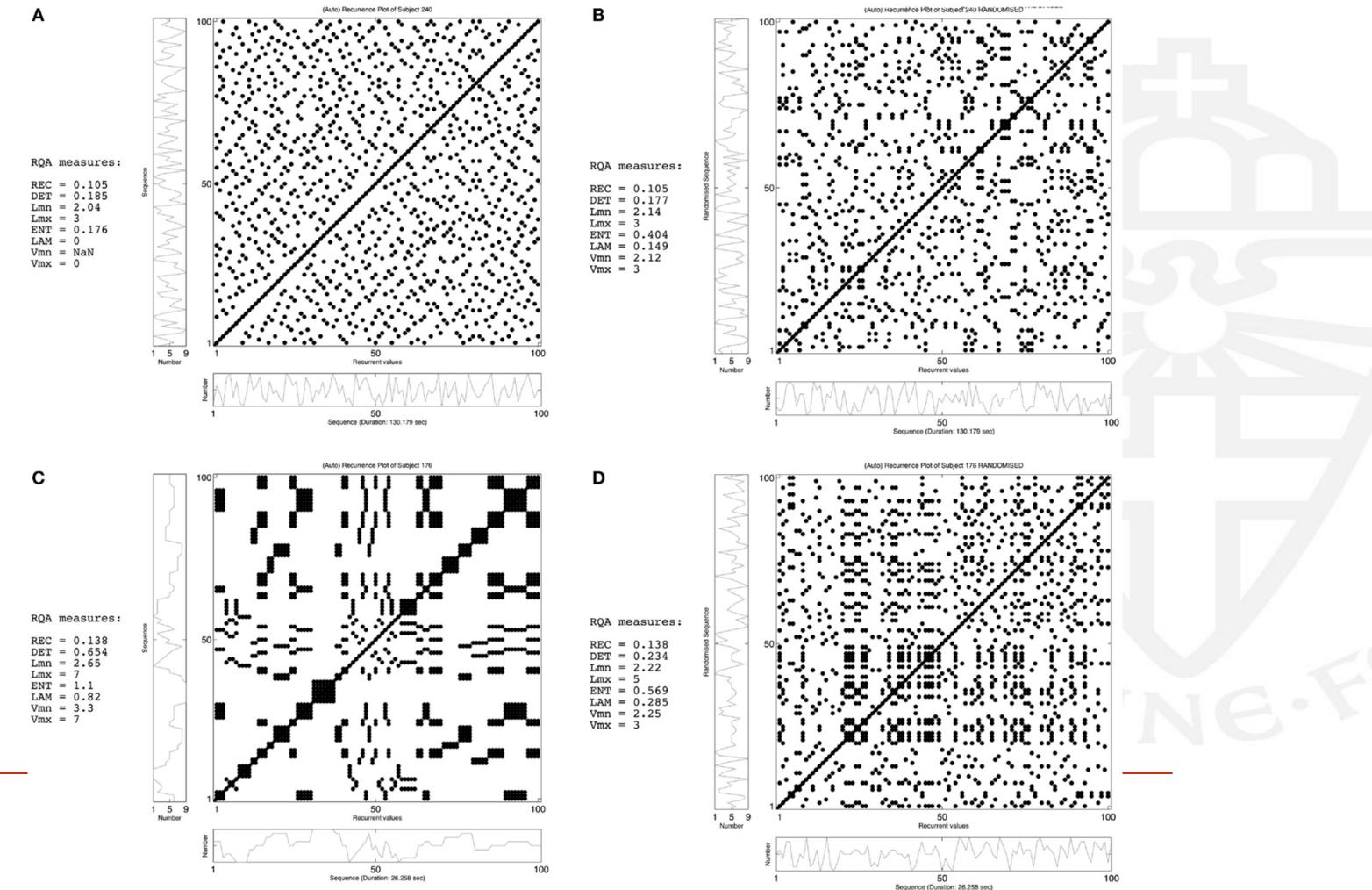




С



50 Sequence (Duration: 26.258 sec)



N=181

	Updating	Inhibition of prepotent responses	Output inhibition	Undefined		Updating	Inhi
Redundancy	0.792				Redundancy	0.782	
RNG2		0.859			RNG2	0.713	
RG median	-0.785				RG median	-0.674	
RG mean	-0.586				RG mean	-0.652	
Coupon	0.830				Coupon	0.630	
Adjacency		0.874			Adjacency		
TPI		-0.844			TPI		
Runs		0.478		0.769	Runs		
RNG		0.874			RNG	0.593	
Phi 2			0.876		Phi 2		
Phi 3			0.811		Phi 3		
Phi 4			0.691		Phi 4		
Phi 6	0.423	-0.569			Phi 6		
Phi 5	0.445		0.462	0.521	Phi 5		
Phi 7	0.631				Phi 7		
RG mode	-0.475				RG mode		
Eigenvalues	3.409	3.844	2.729	1.201	Eigenvalues	3.200	
% of variance	21.304	24.026	17.059	7.508	% of variance	19.998	

Output is sorted by size and a cut-off value of 0.4 was used.

Output is sorted by size and a cut-off value of 0.4 was used.

	Inhibition of prepotent responses	Updating		Inhibition of prepotent responses	Updating
Averaged diagonal	0.963		Averaged diagonal	0.957	
Longest diagonal	0.922		Entropy	0.937	
Determinism	0.917		Longest diagonal	0.852	
Entropy	0.839		Determinism	0.730	
Laminarity		0.918	Laminarity		0.861
Trapping time		0.878	Trapping time		0.765
Recurrence rate		0.486	Recurrence rate		0.712
Eigenvalues	3.487	1.857	Eigenvalues	3.086	1.948
% of variance	49.818	26.523	% of variance	44.085	27.830

Output is sorted by size and a cut-off value of 0.4 was used.

Output is sorted by size and a cut-off value of 0.4 was used.

N=242

nhibition of prepotent responses	Output inhibition	Undefined
		0.432
0.478		
		-0.486
	-0.461	
		0.515
0.885		
-0.828		
0.791		
0.645		
	0.879	
	0.719	0.455
	0.570	0.556
		0.803
		0.637
		0.634
		-0.546
2.817	2.392	3.047
17.607	14.949	19.045

Phase Space Reconstruction

continuous time series

f.hasselman@pwo.ru.nl

Quantifying Complex Dynamics

scale-free / fractal highly correlated / interdependent nonlinear / maybe chaotic result of multiplicative interactions

Takens' (1981) Embedding Theorem tells us that a (strange) attractor can be recovered ("reconstructed") from observations of a single component process of a complex interactiondominant system.

Behavioural Science Institute Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand and L.-S. Young (Eds.) Dynamical Systems and Turbulence. Lecture Notes in Radboud University Nijmegen Mathematics vol. 898, 366-381, Springer-Verlag. 18

How to study interaction-dominant systems

As you know in a **coupled system** the time evolution of one variable depends on other variables of the system. This implies that one variable contains information about the other variables (of course depending upon the strength of coupling and maybe the type of interaction)

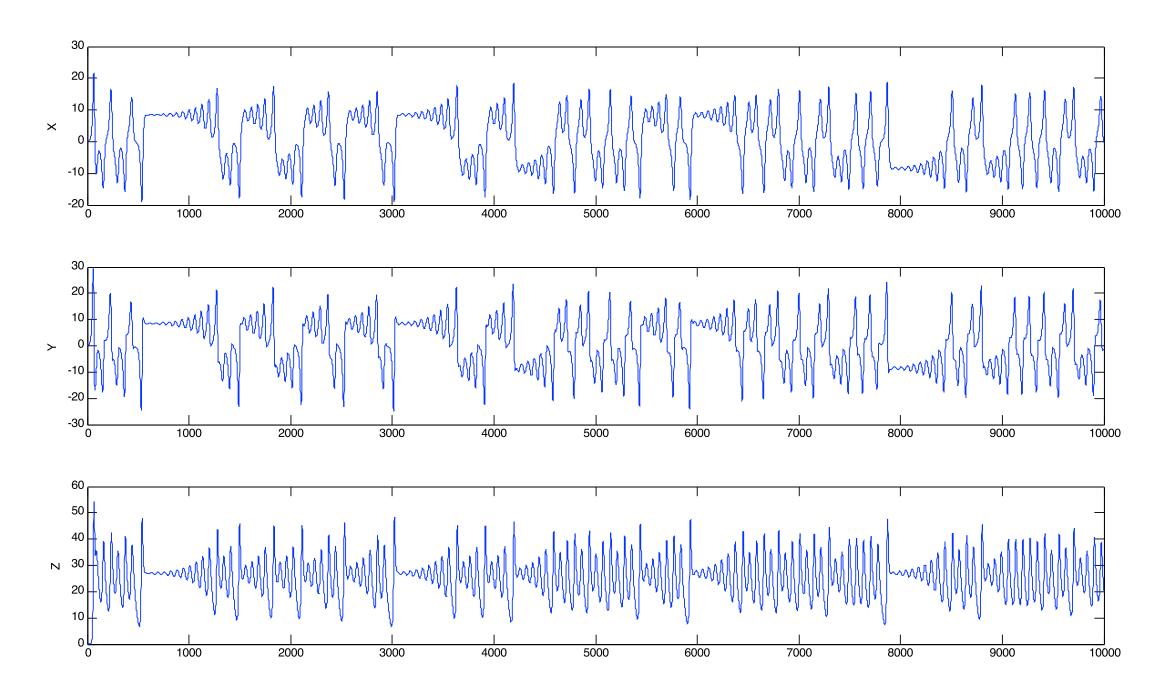
So given the Lorenz system ...

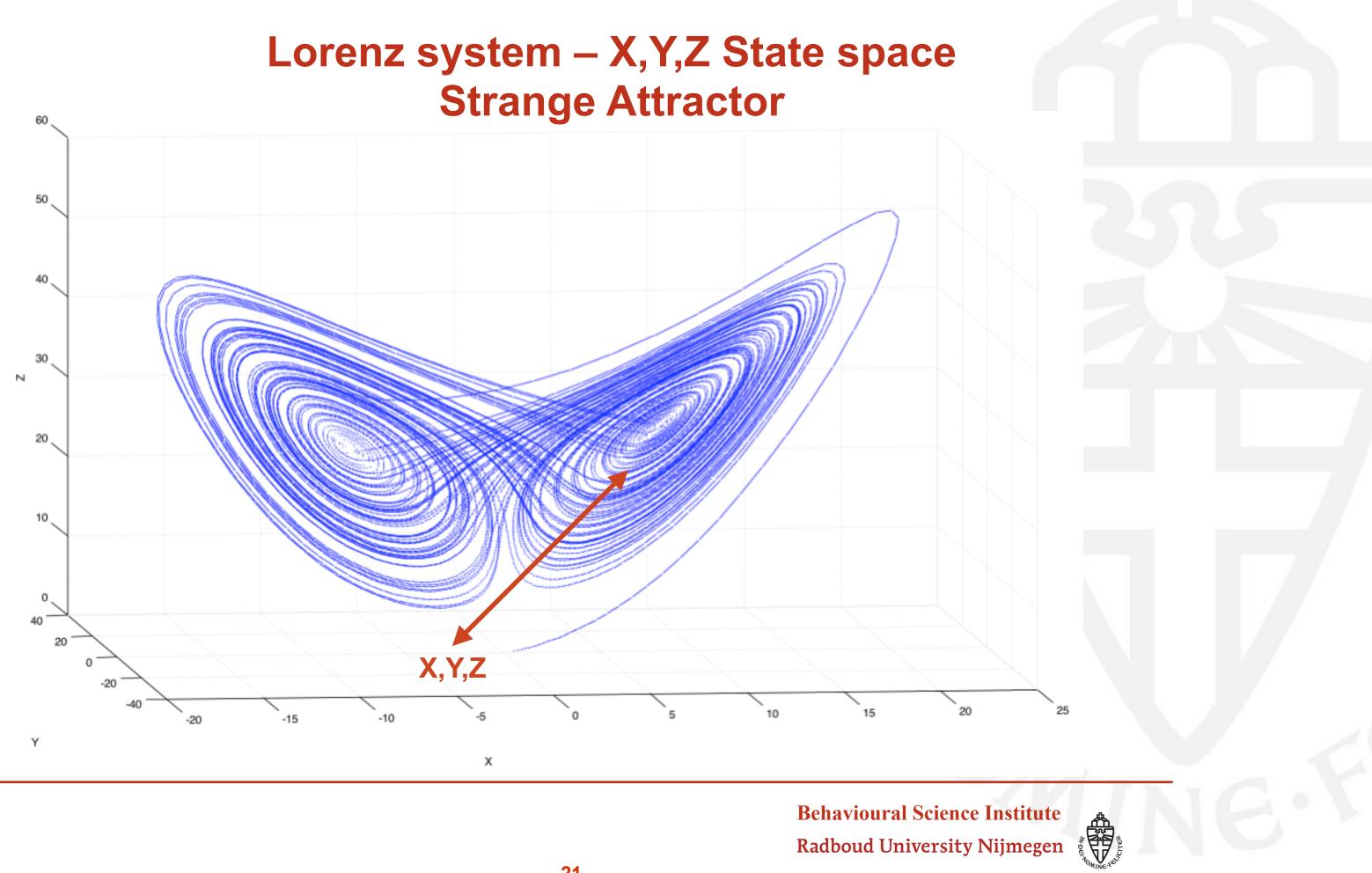
$$dX/dt = \delta \cdot (Y - X)$$
$$dY/dt = r \cdot X - Y - X \cdot Z$$
$$dZ/dt = X \cdot Y - b \cdot Z$$

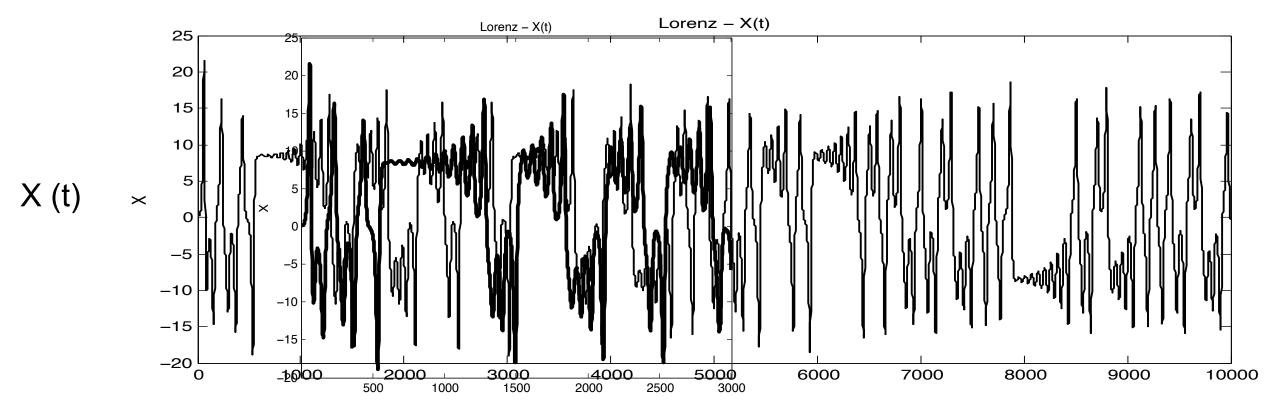
Takens' theorem suggests that we should be able to reconstruct the higly chaotic "butterfly" attractor by just using X(t) [or Y(t) or Z(t)] ...

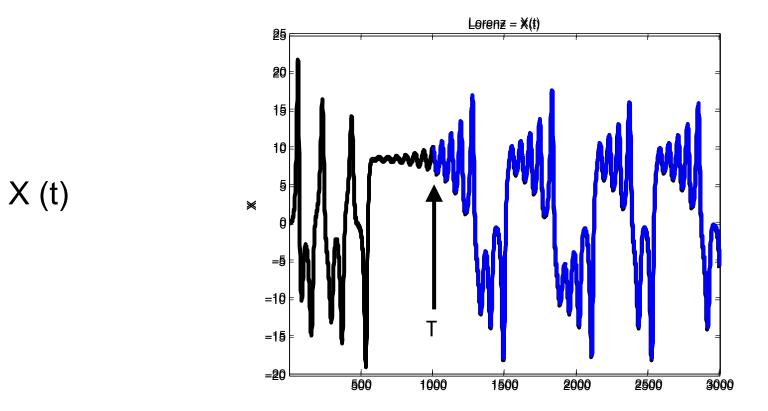
Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand
and L.-S. Young (Eds.) Dynamical Systems and Turbulence. Lecture Notes in
Mathematics vol. 898, 366–381, Springer-Verlag.Behavioural Science Institute
Radboud University Nijmegen

Lorenz system – Time series of X, Y and Z



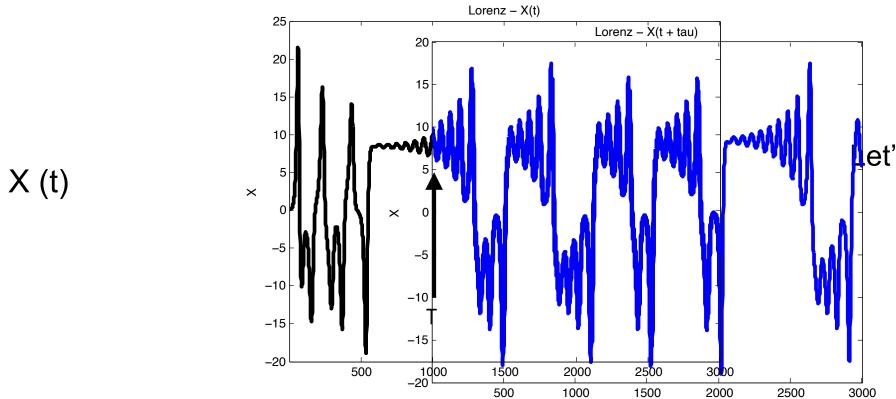






Behavioural Science Institute Radboud University Nijmegen

Let's take our embedding delay or lag to be: T = 1000

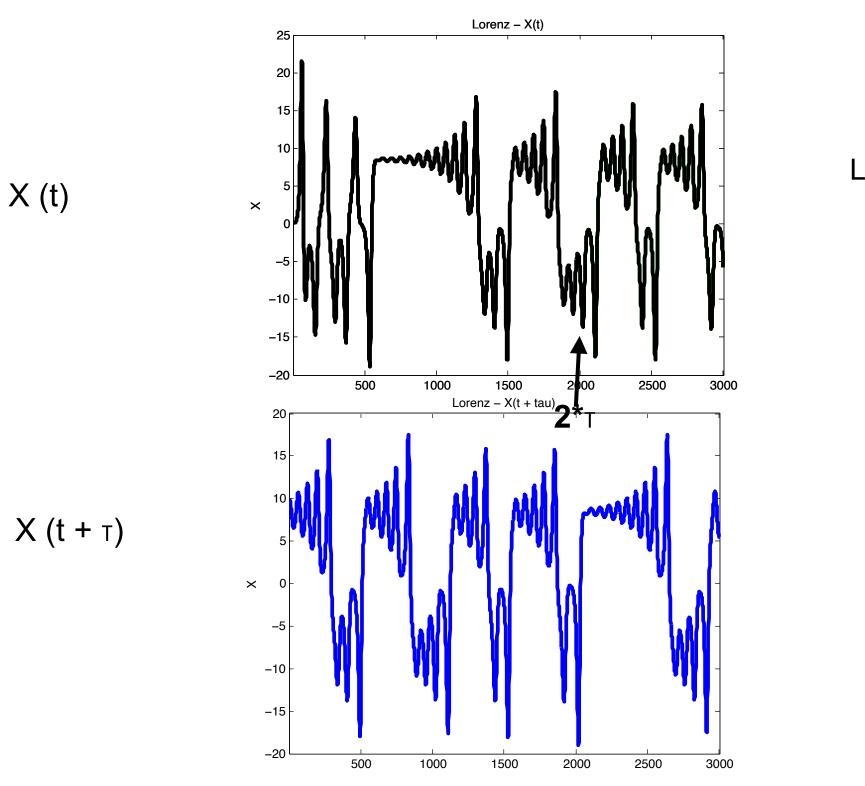


X (t + T)

Behavioural Science Institute Radboud University Nijmegen

et's take our embedding delay or lag to be: T = 1000

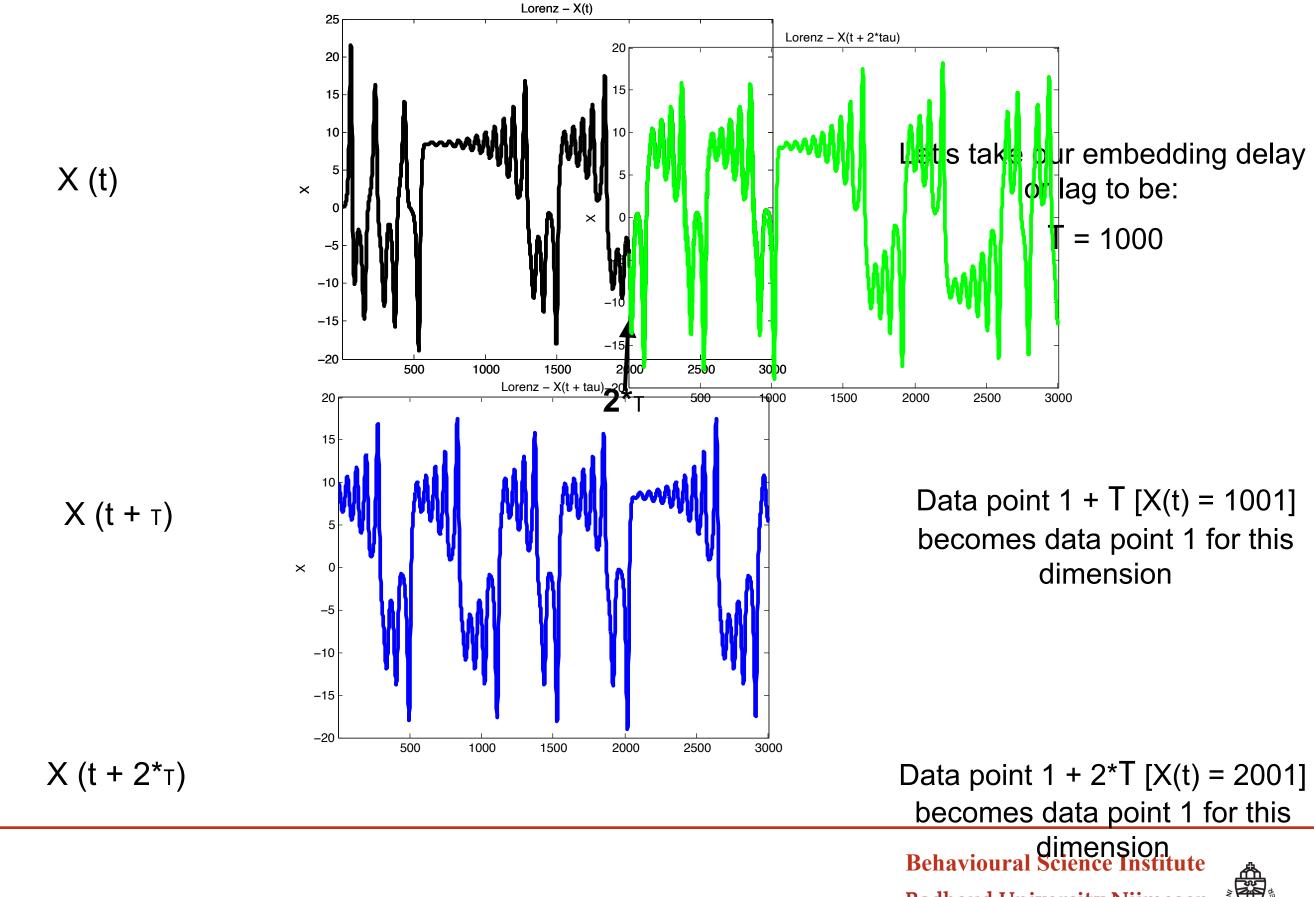
Data point 1 + T [X(t) = 1001] becomes data point 1 for this dimension



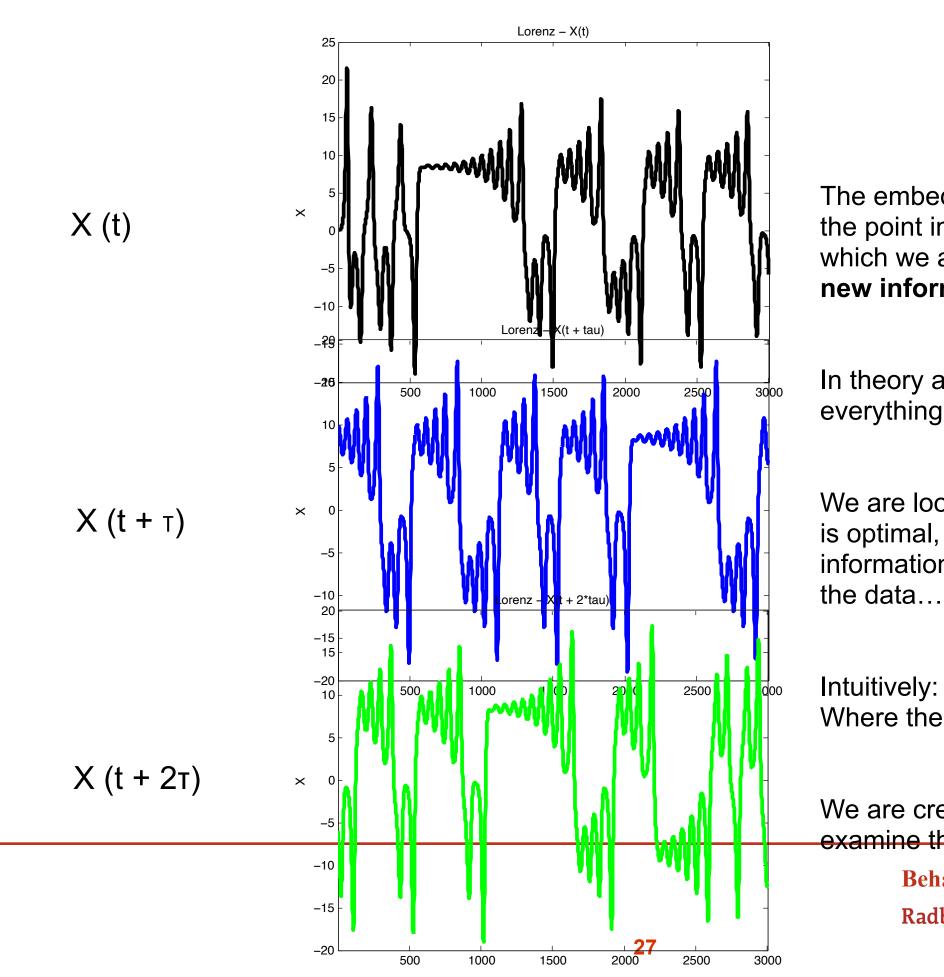
Behavioural Science Institute Radboud University Nijmegen

Let's take our embedding delay or lag to be: T = 1000

Data point 1 + T [X(t) = 1001] becomes data point 1 for this dimension



Radboud University Nijmegen



The embedding lag reflects the point in the time series at which we are getting new information about the system...

In theory any lag can be used, everything is interacting...

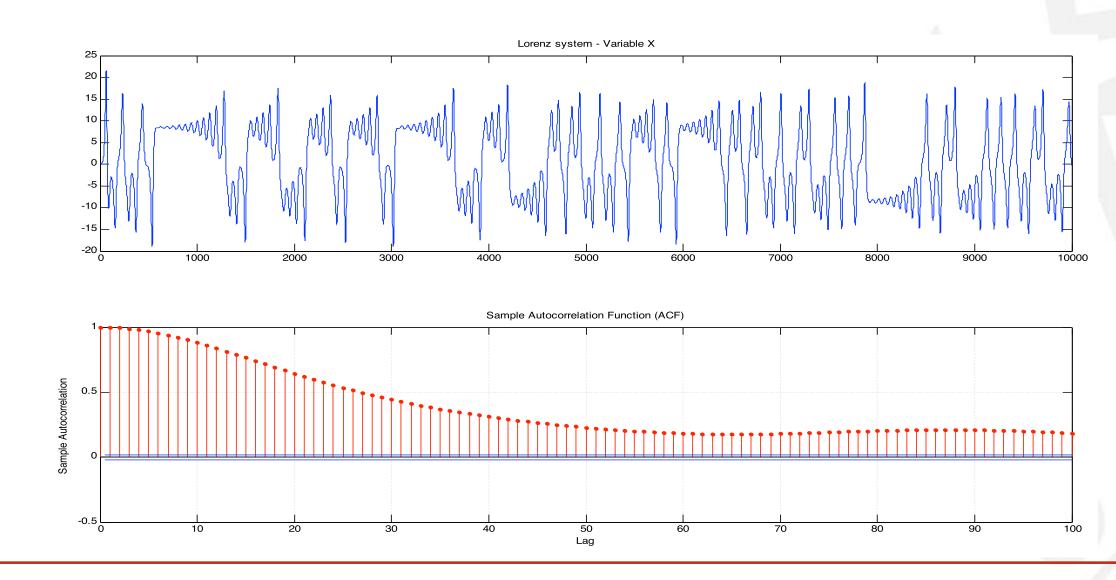
We are looking for the lag which is optimal, gives us maximal new information about the temporal structure in

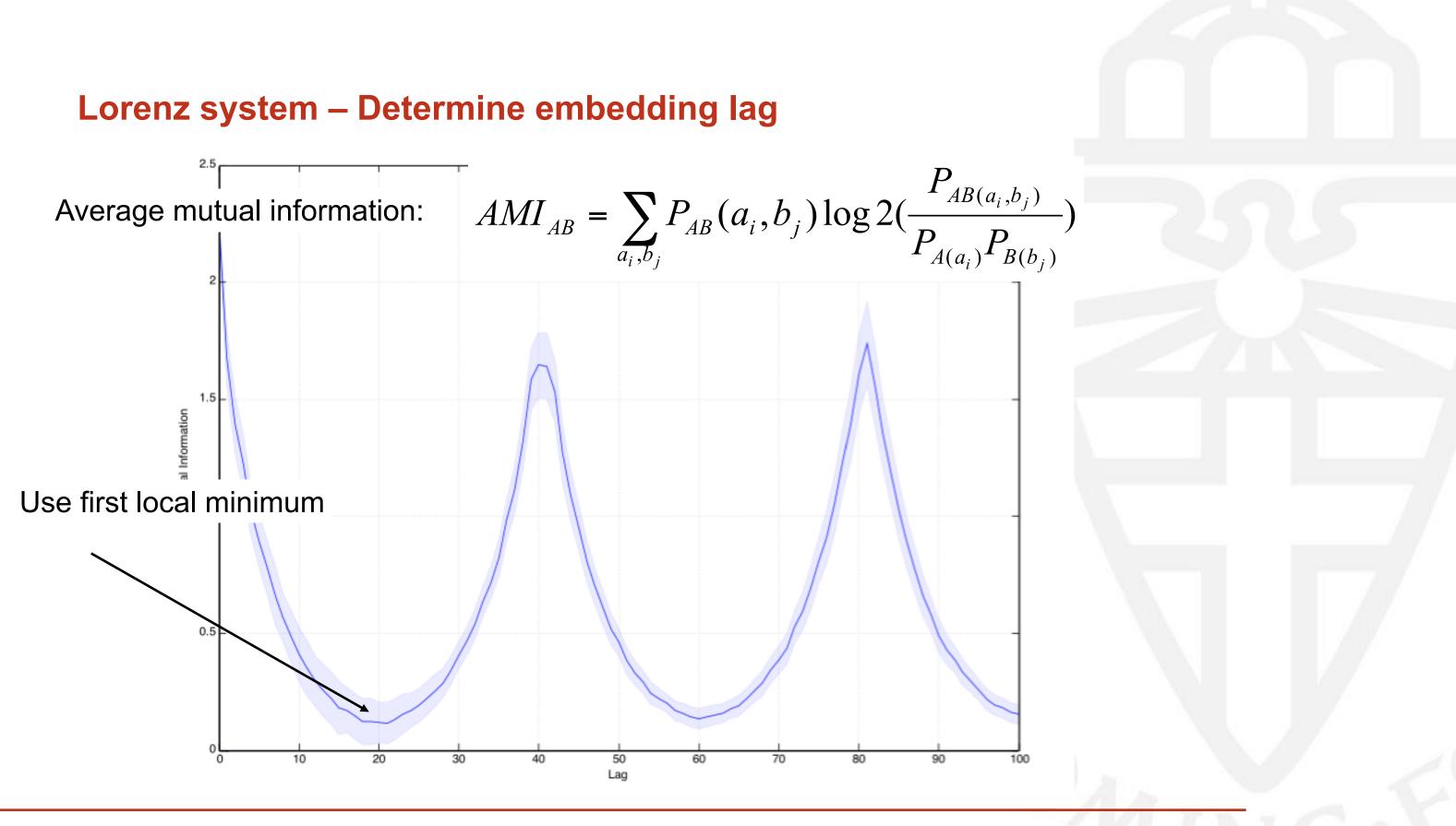
Where the autocorrelation is zero

We are creating a return plot to examine the systems' state space!

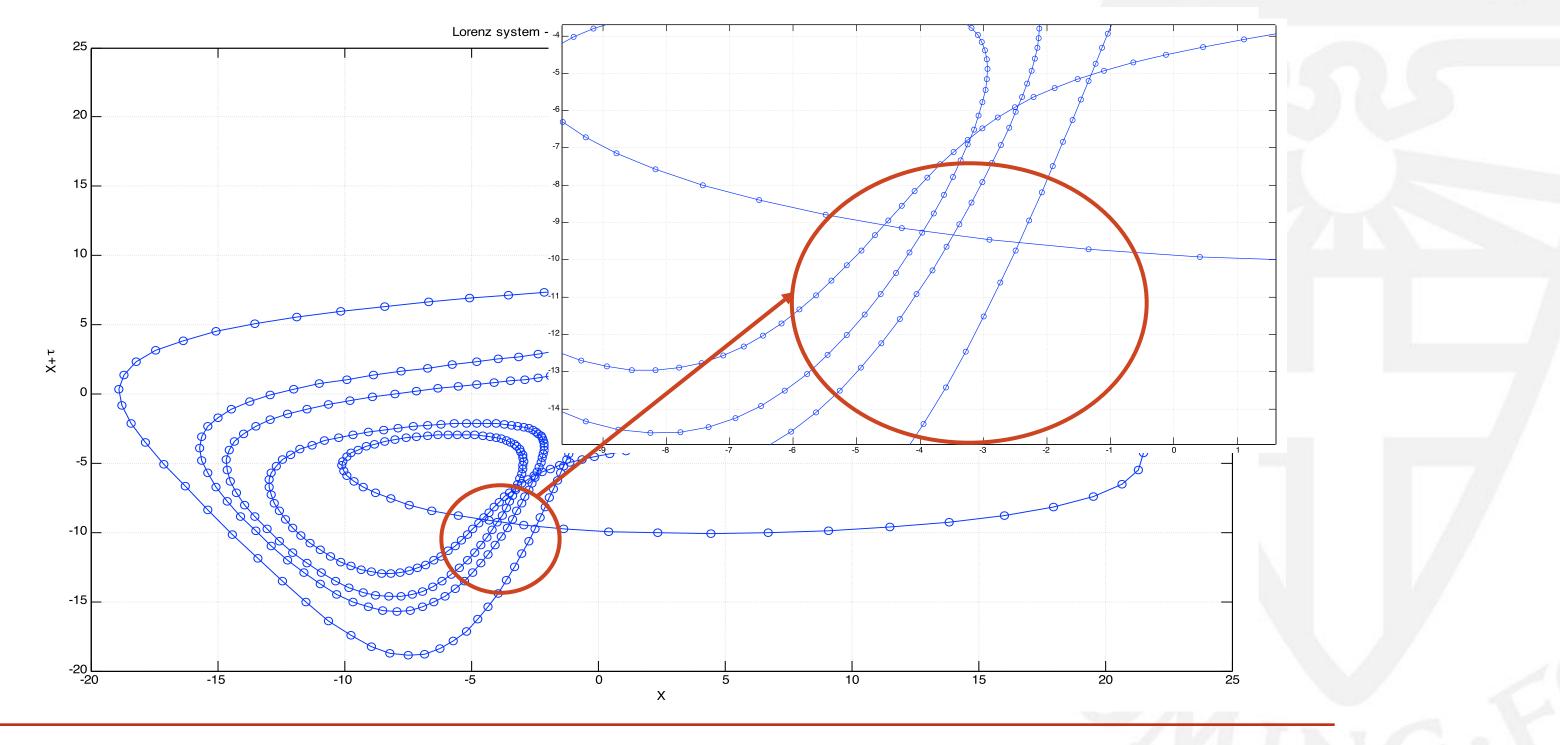
How to determine embedding lag?

• We saw that the autocorrelation function is not very helpful when you are dealing with long range correlations in the data.

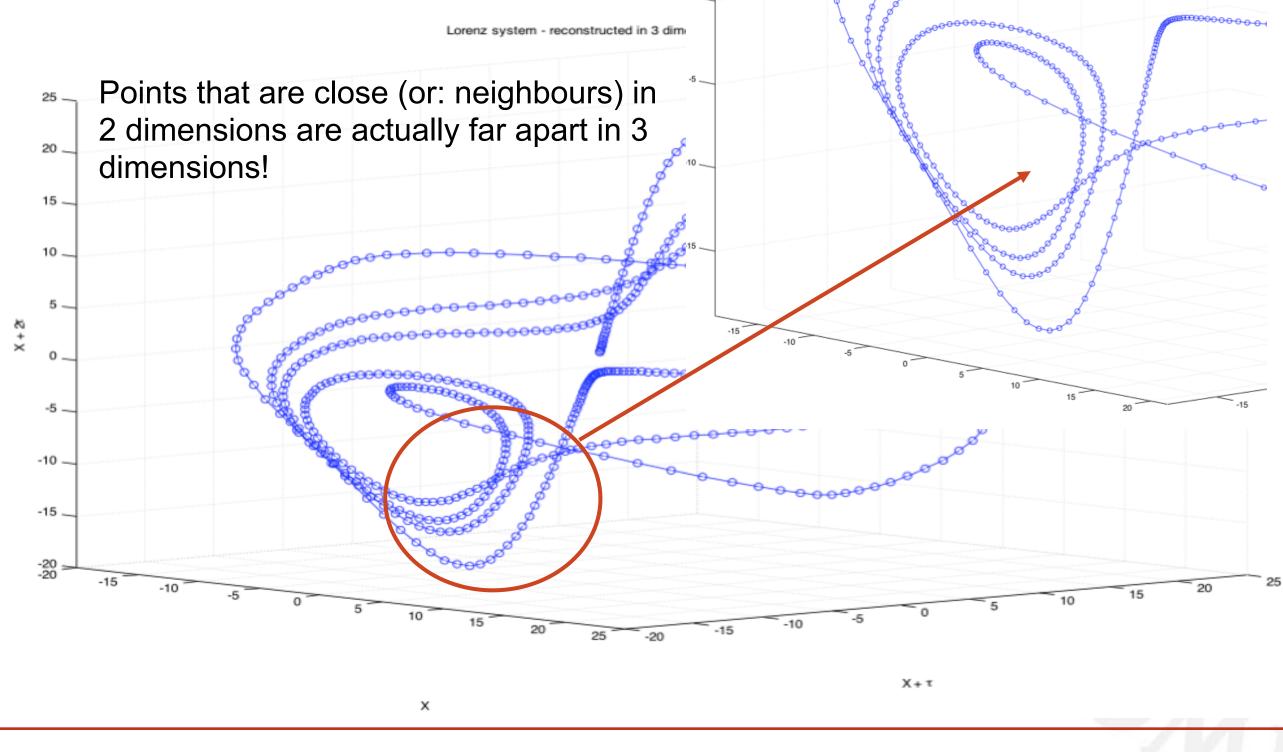




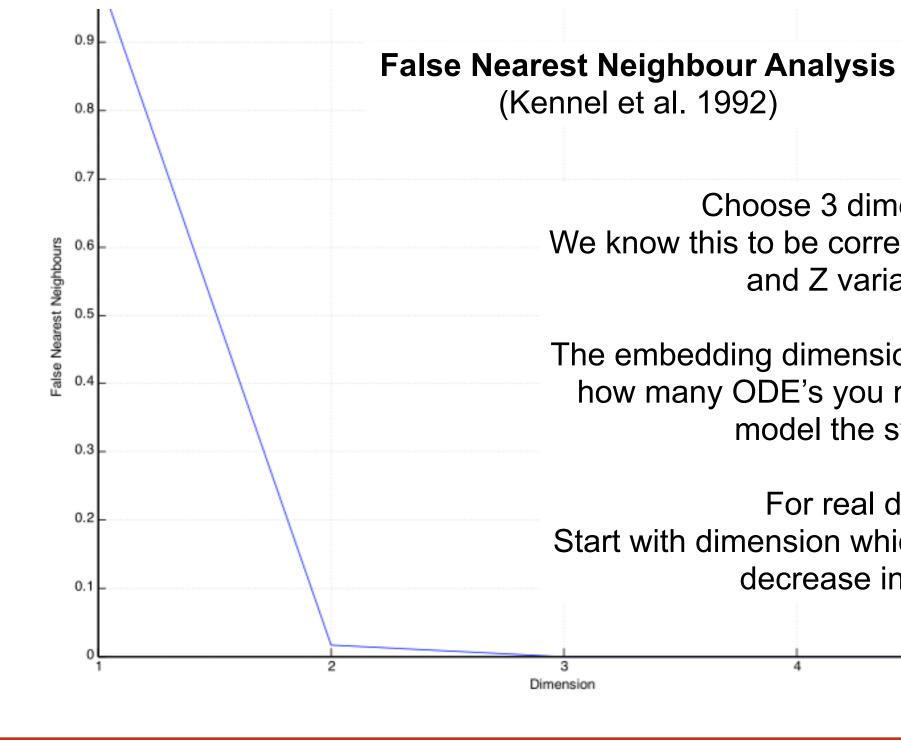
How many dimensions? Determine embedding dimension (m)



Lorenz system – Determine embedding dimension



Lorenz system – Determine embedding dimensions



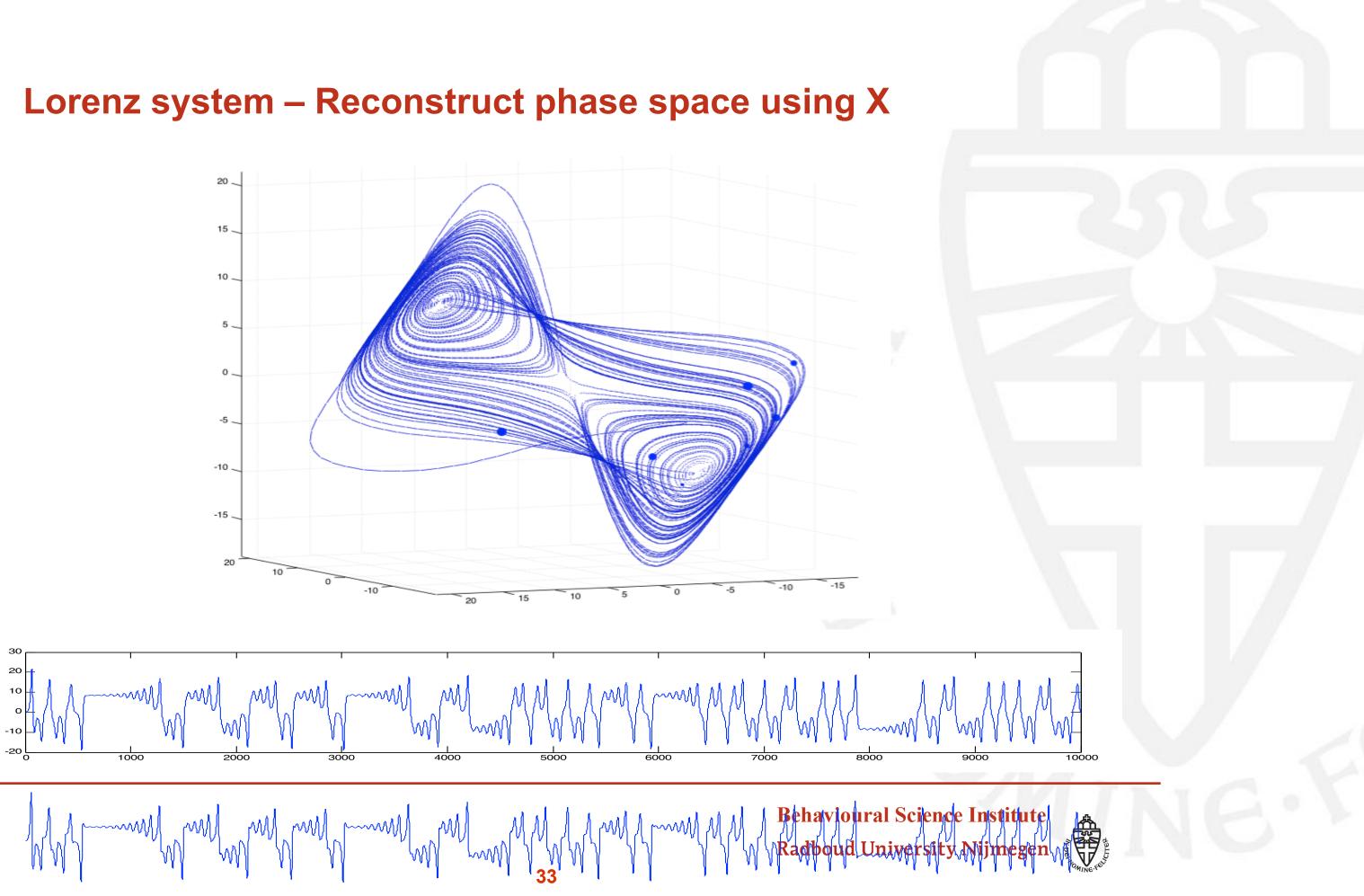
Behavioural Science Institute Radboud University Nijmegen

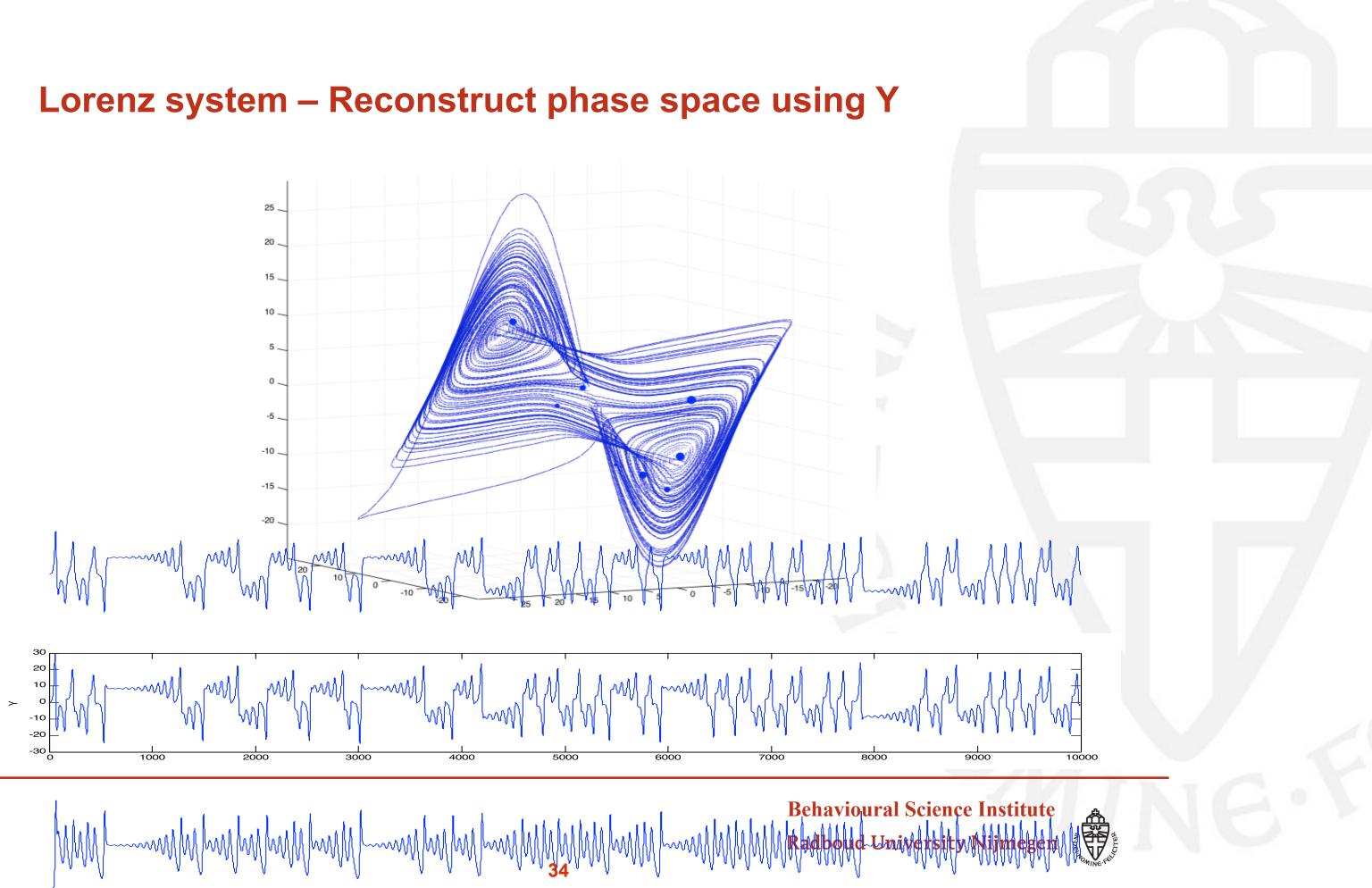
Choose 3 dimensions! We know this to be correct, Lorenz has X, Y and Z variables.

The embedding dimension is an estimate of how many ODE's you minimally need to model the system

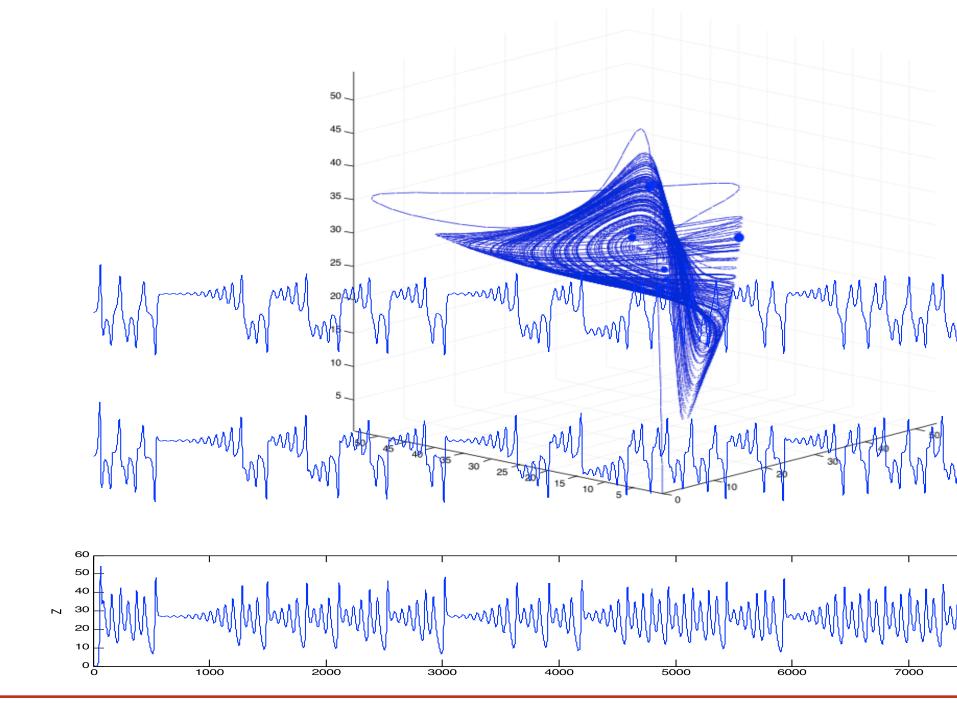
For real data: Start with dimension which causes greatest decrease in FNN

 \times





Lorenz system – Reconstruct phase space using Z



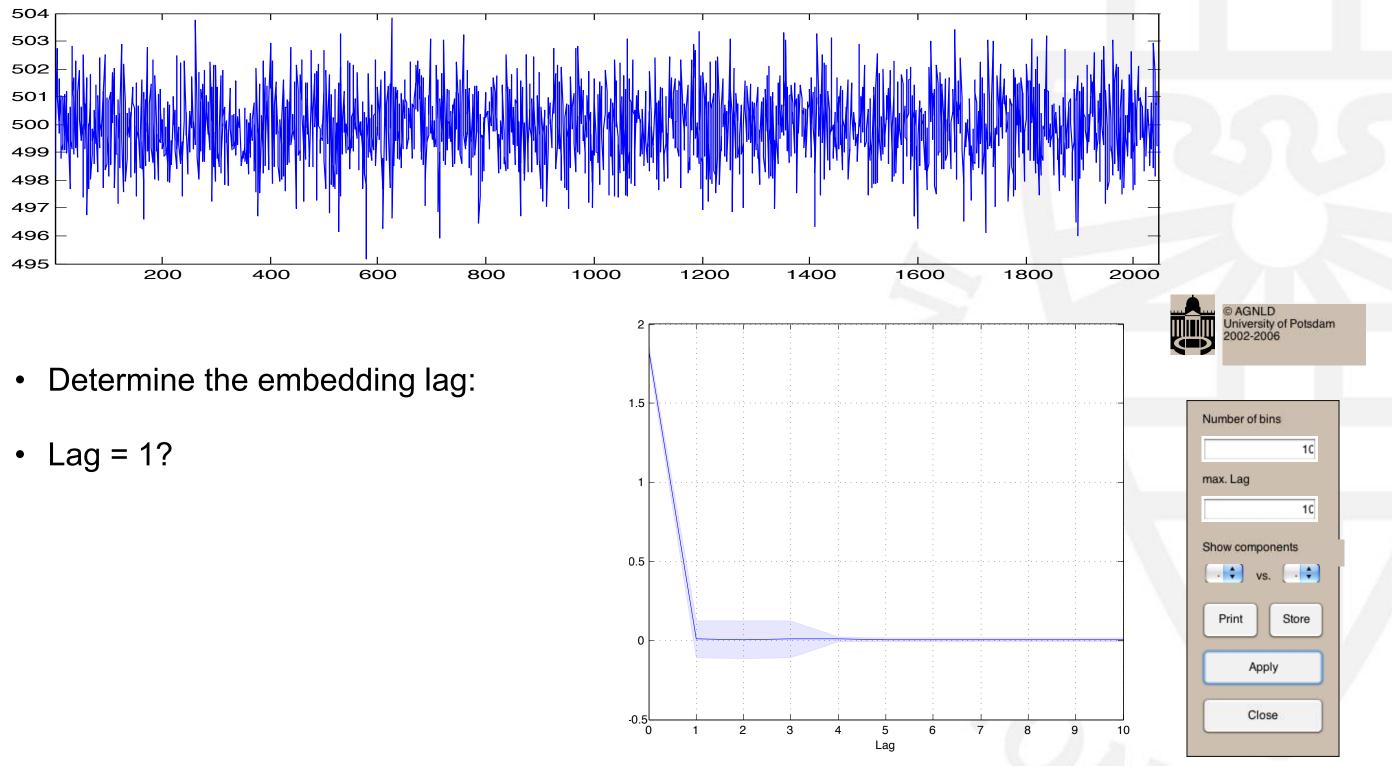
Isn't that amazing?

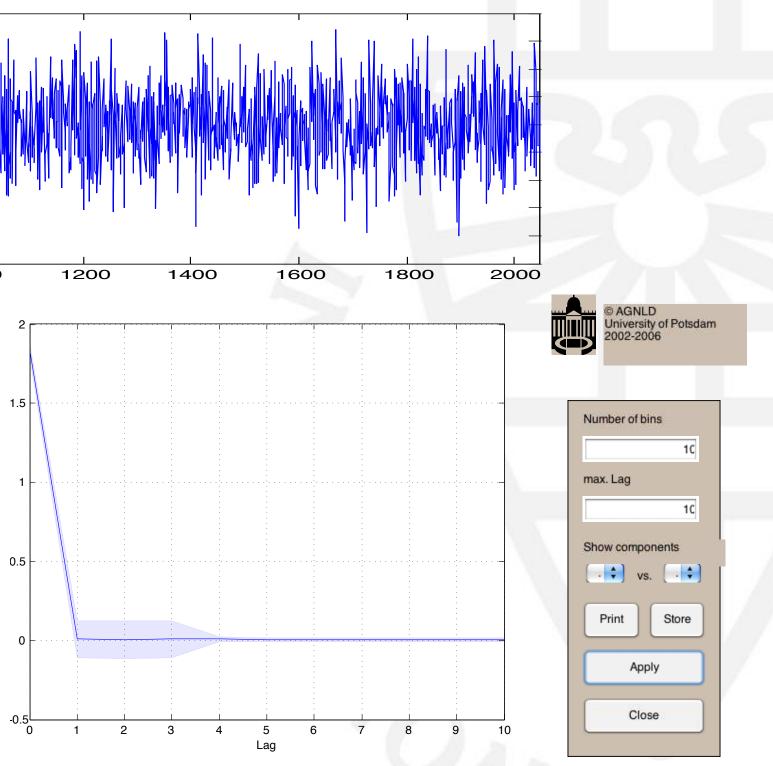
- Take a moment to realise what we just did:
- The state space (defined by X,Y and Z) of a complex, nonlinear chaotic system was reconstructed to a phase space (lag plot) of 3 surrogate dimensions X, X_{t+T}, X_{t+2*T}
- You only need to measure one variable of a system!! ... because "everything is interacting"... We **exploit (and need)** the dependencies in the data!

The length of your data set needs to be long enough to create the surrogate dimension.

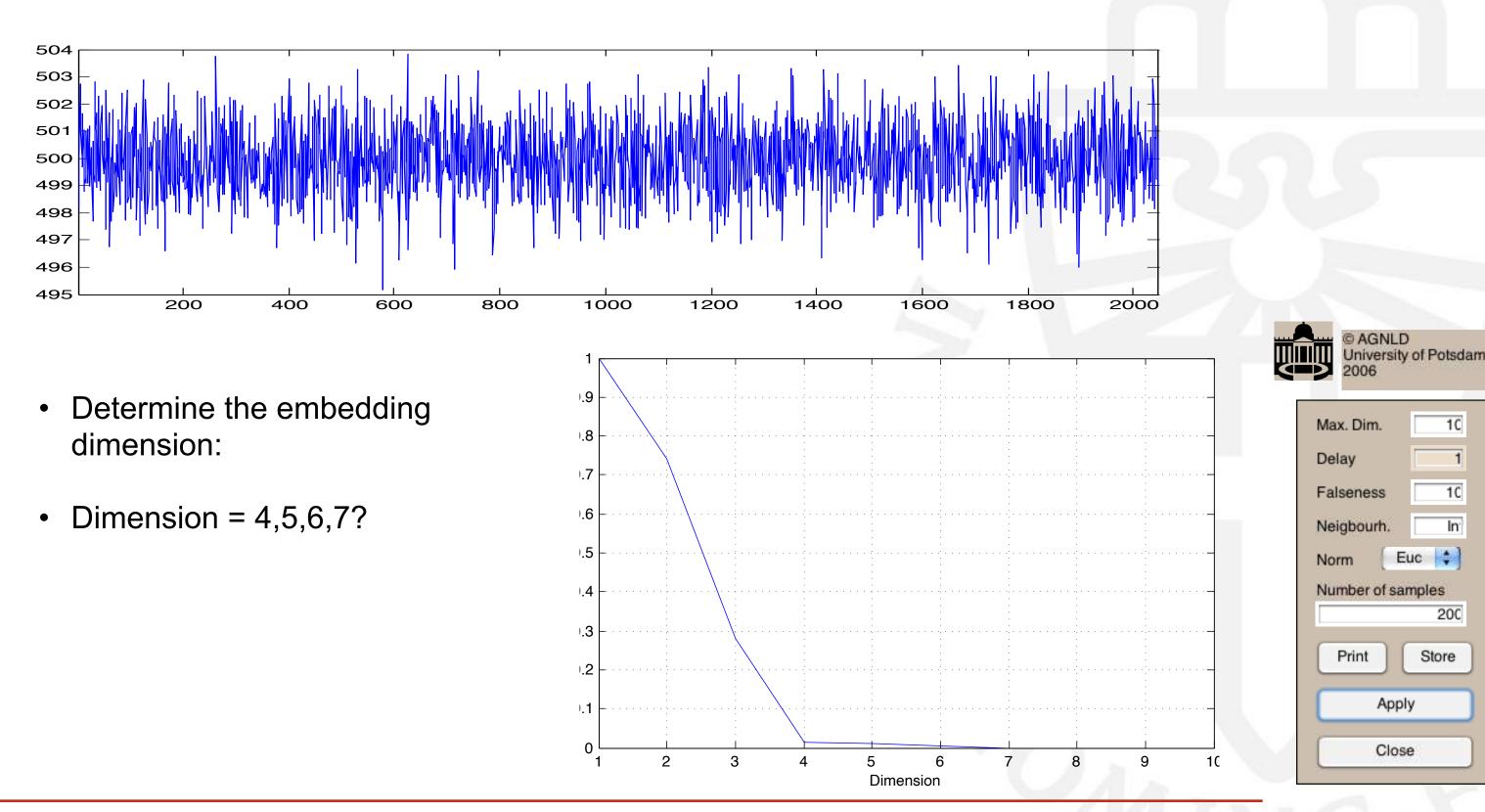
The reconstruction process does not make many assumptions about the • data. You can also try to reconstruct a phase space from a random variable. (What will happen?)

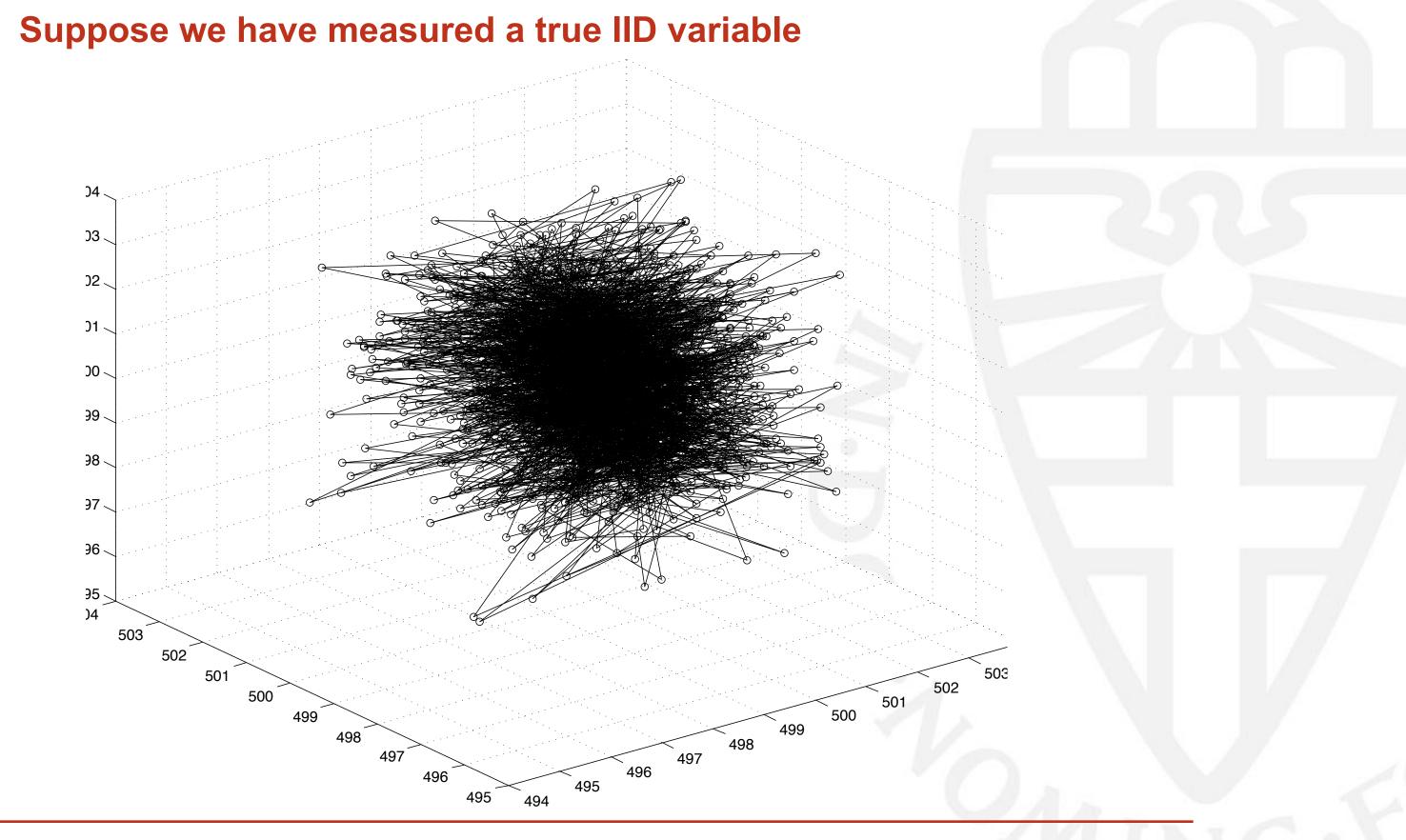
Suppose we have measured a true IID variable





Suppose we have measured a true IID variable

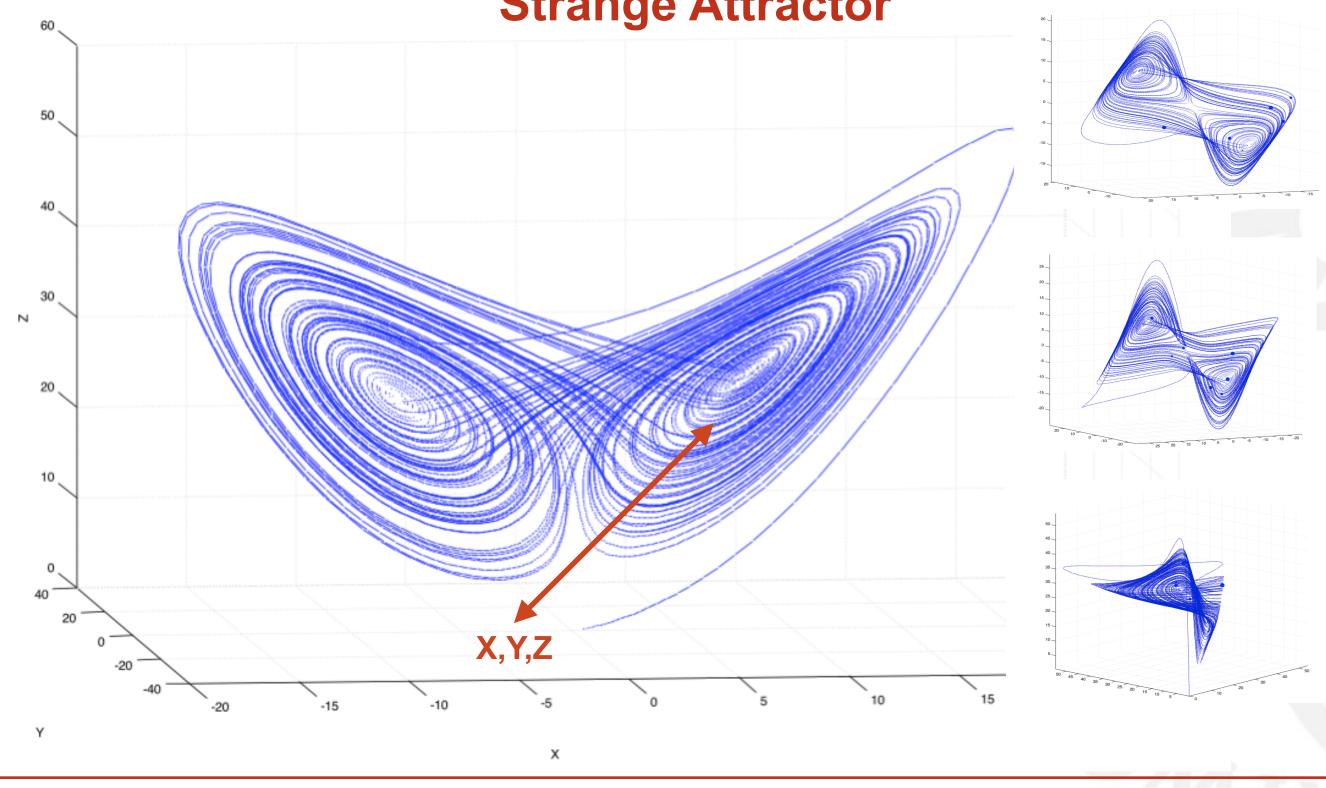




Not so amazing?

- The reconstructed attractor is 'Topologically equivalent' not exactly the same!!! (compare to random cloud of points) The exact lag is not that important, it is just a way to optimize the reconstruction
- If you are working with 'real' data from psychological experiments you will find that the dimensionality needed to describe the system is usually 10 dimensions or higher... No visual inspection anymore!
- Solution: Quantify the dynamic behaviour of the system in state space in terms of periodicity, randomness, etc. This remains similar to the original dynamics even if the attractor is not reconstructed exactly the same way (the reconstructed attractor is still much more constrained than all the states theoretically possible).
- (Cross) Recurrence Quantification Analysis!

Lorenz system – X,Y,Z State space **Strange Attractor**



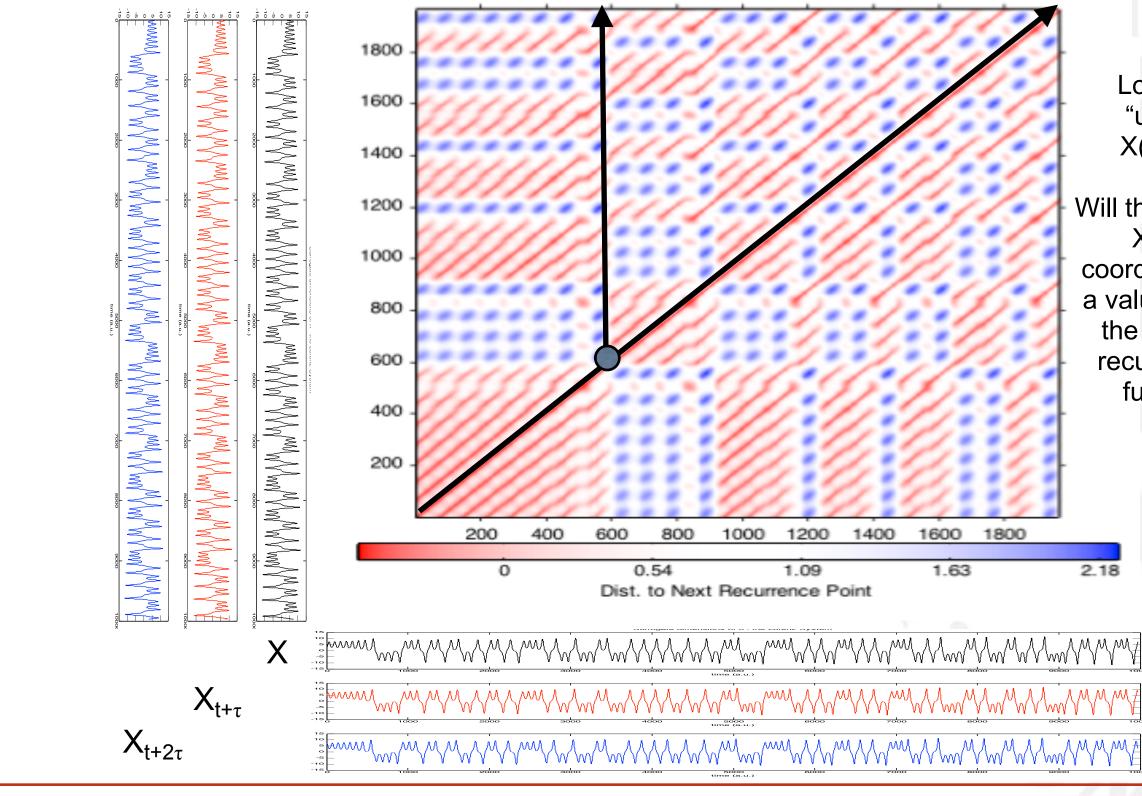
Topological Equivalence (~Homeomorphic)

To which of these "star

are the following homeomorphic?

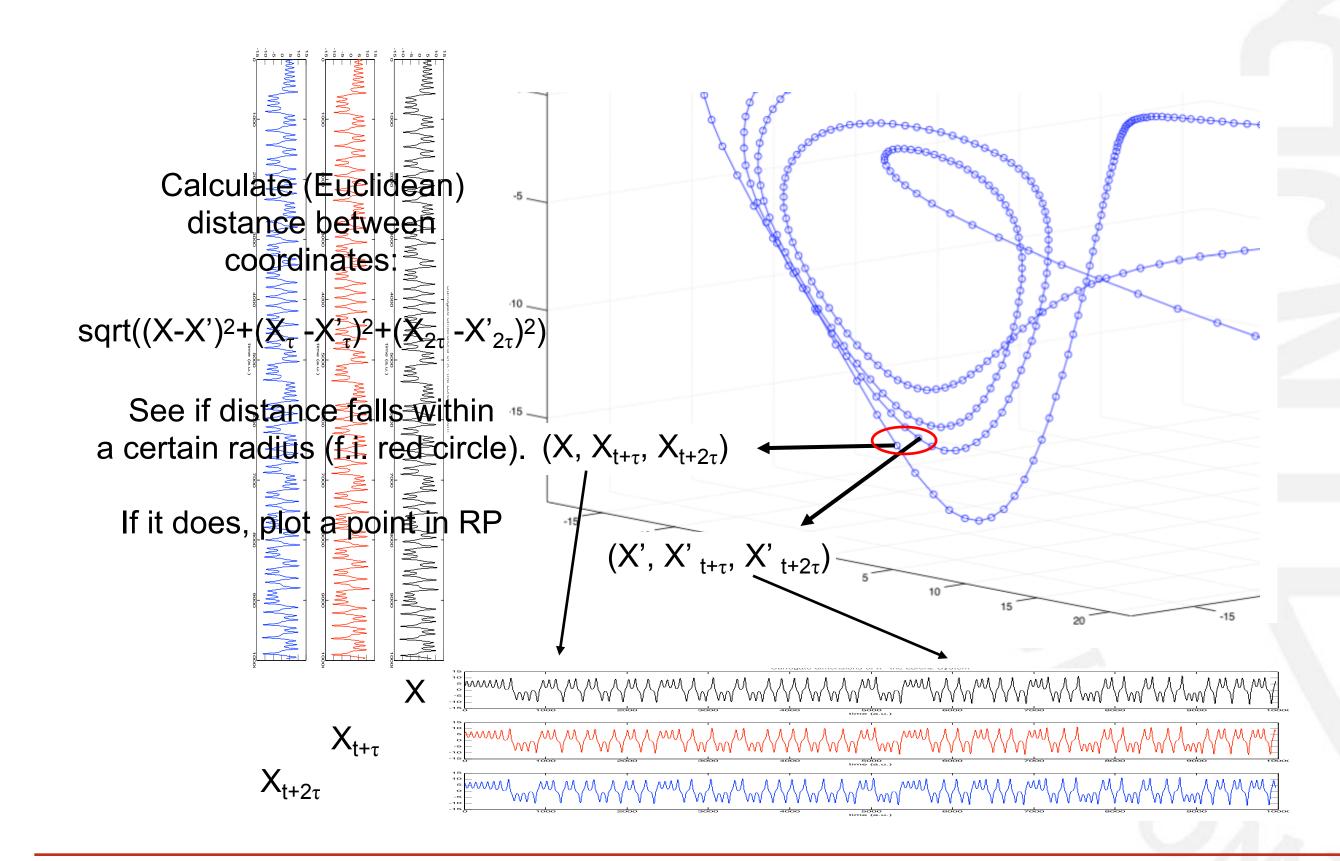


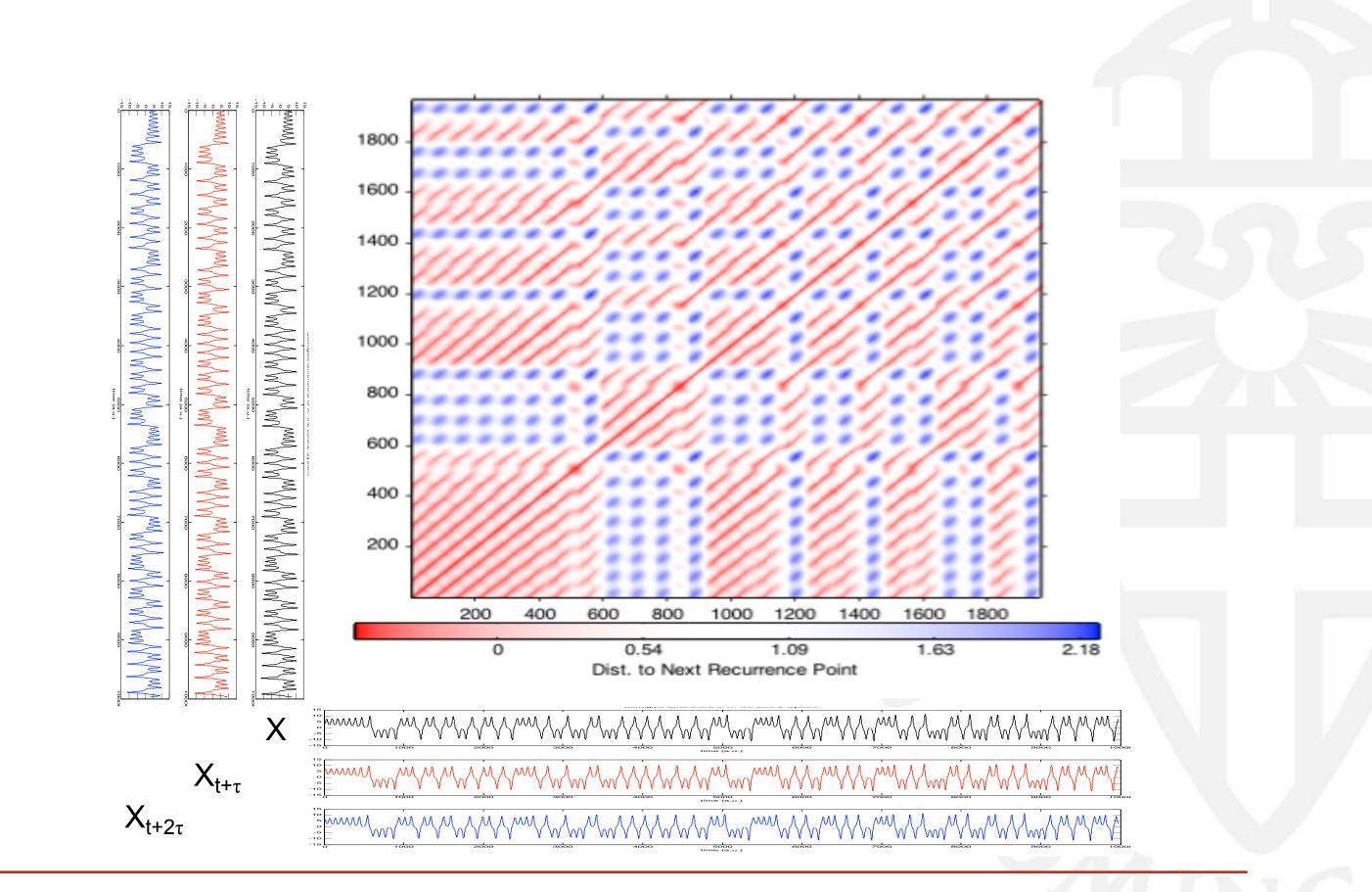
Recurrence Quantification

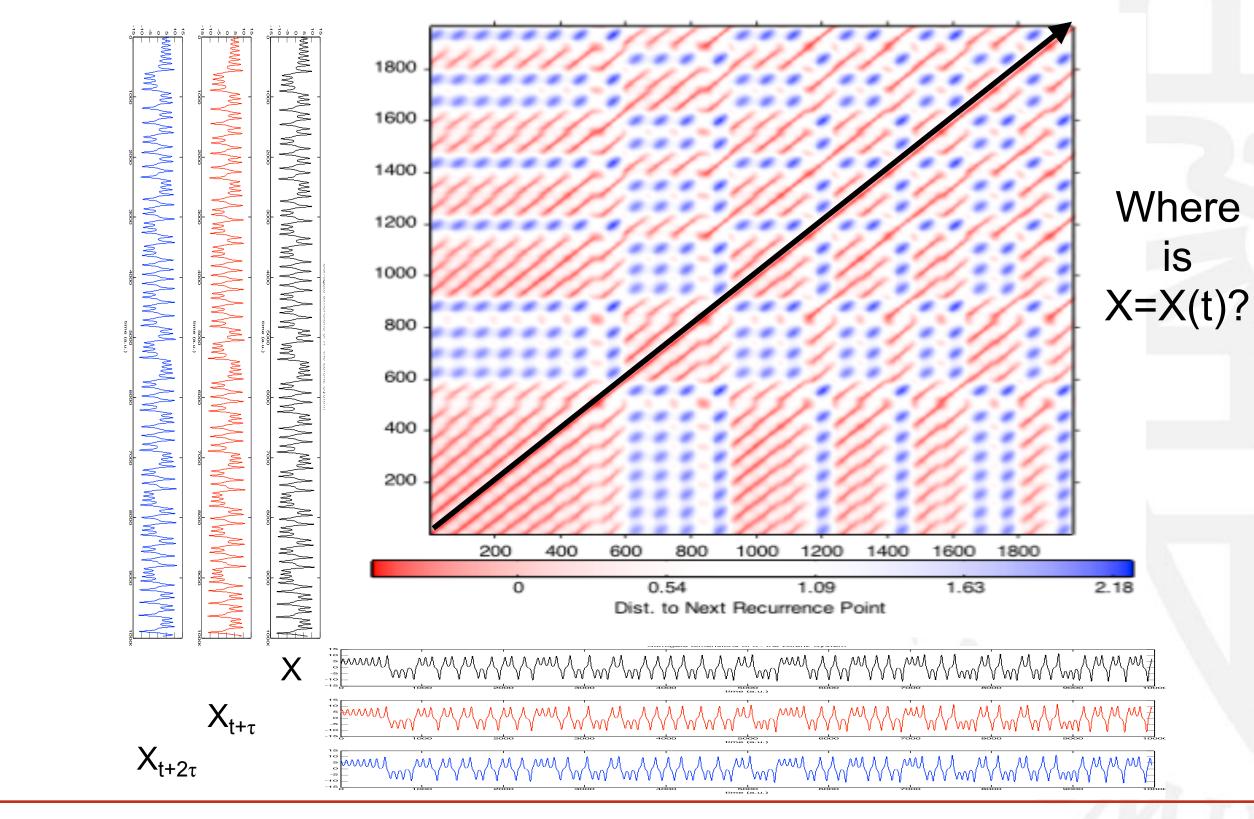


Looking "up" at X(600):

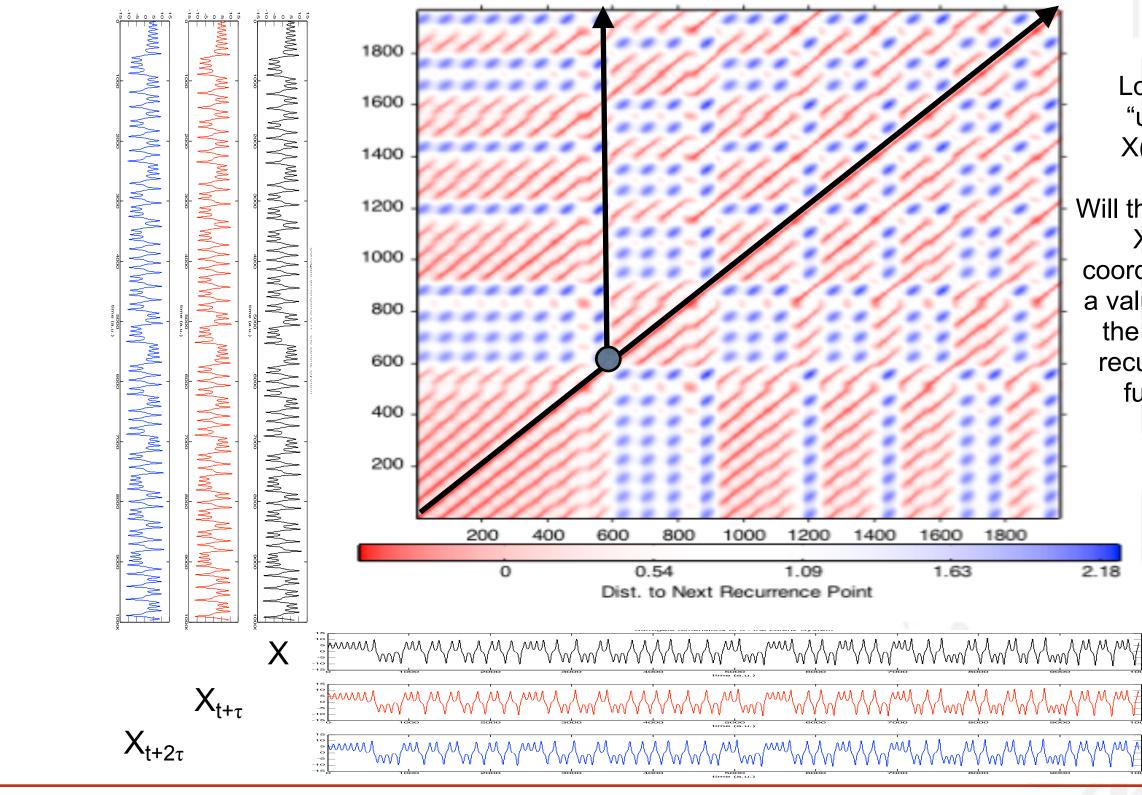
Will the current X,Y,Z coordinate (or a value within the radius) recur in the future?







is



Looking "up" at X(600):

Will the current X,Y,Z coordinate (or a value within the radius) recur in the future?

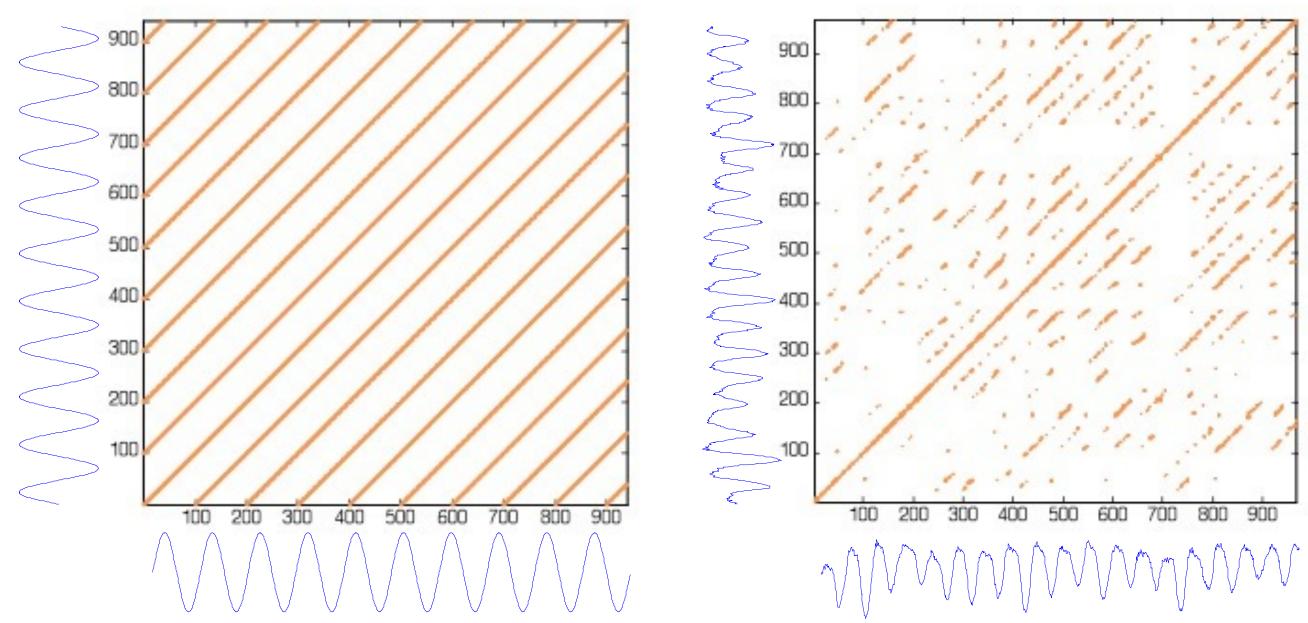
Quantifying Recurrence

Number of recurrent points

Total number of locations

%**REC** =

Sine %REC = 2.9



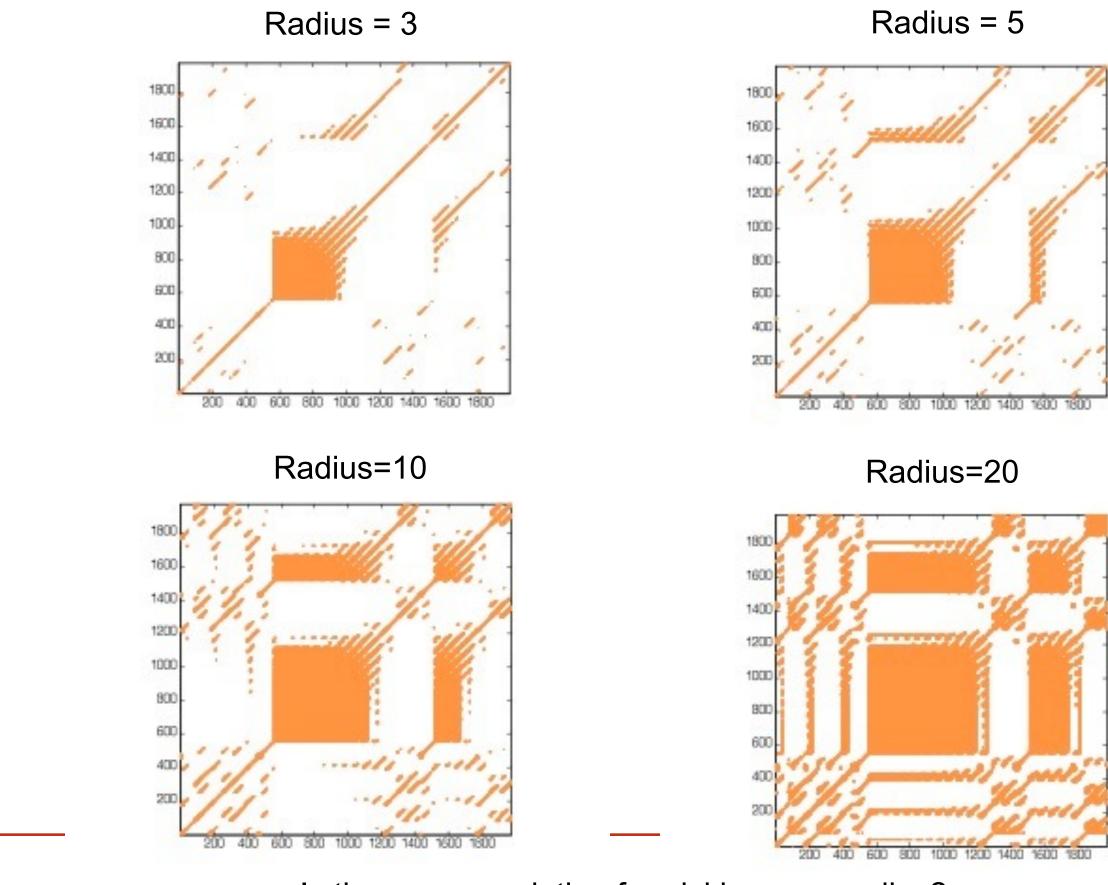
Note that %REC is the number of points in phase space that recur, relative to all possible points that could recur. It is influenced by the radius you choose! When comparing groups or subjects: keep %REC constant.

Shockley 2007

× 100

Limb oscillation to a metronome %REC = .72

Note how the recurrence plot changes with changes in radius



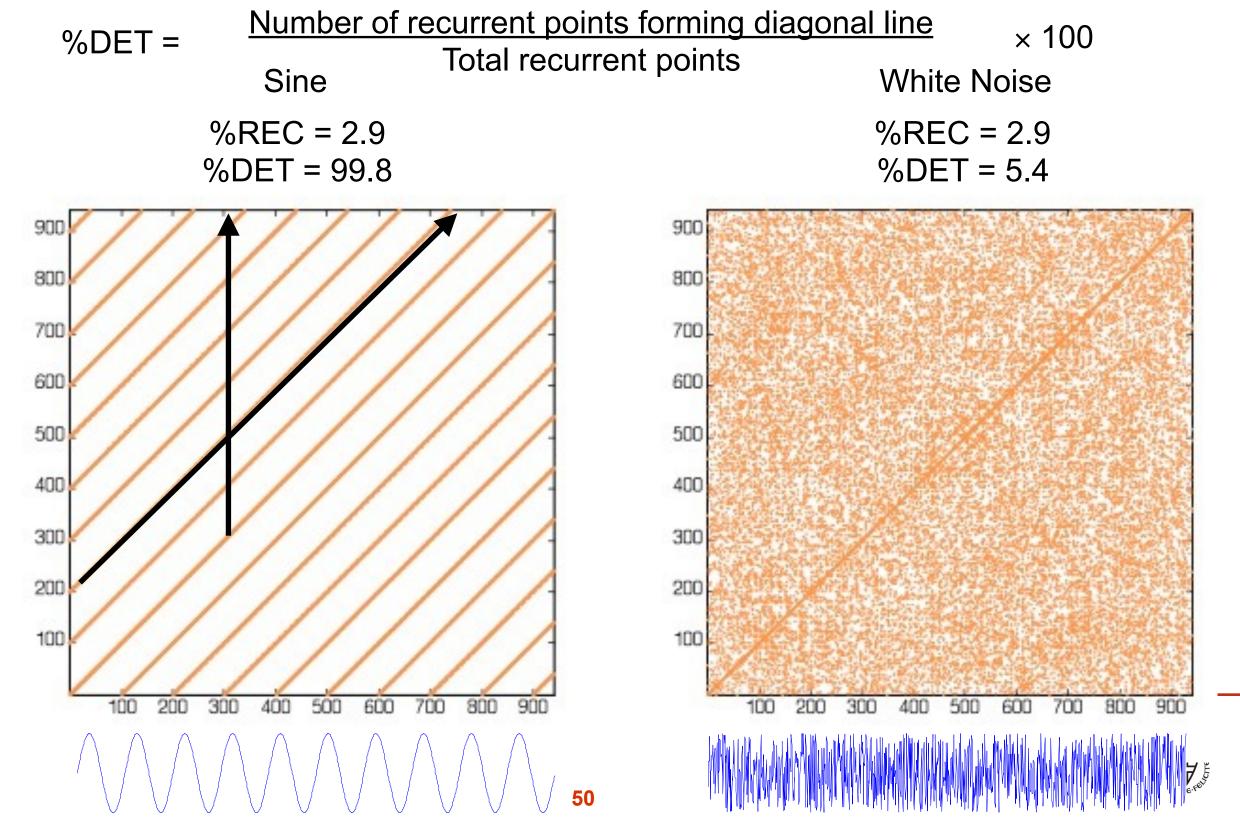
Is there a prescription for picking your radius?

Shockley 2007

%DETERMINISM

Indexes how "patterned" the data are.

Does the system return to the same region of phase space for a longer period of time?



Adapted from Shockley 2007

MAXLINE

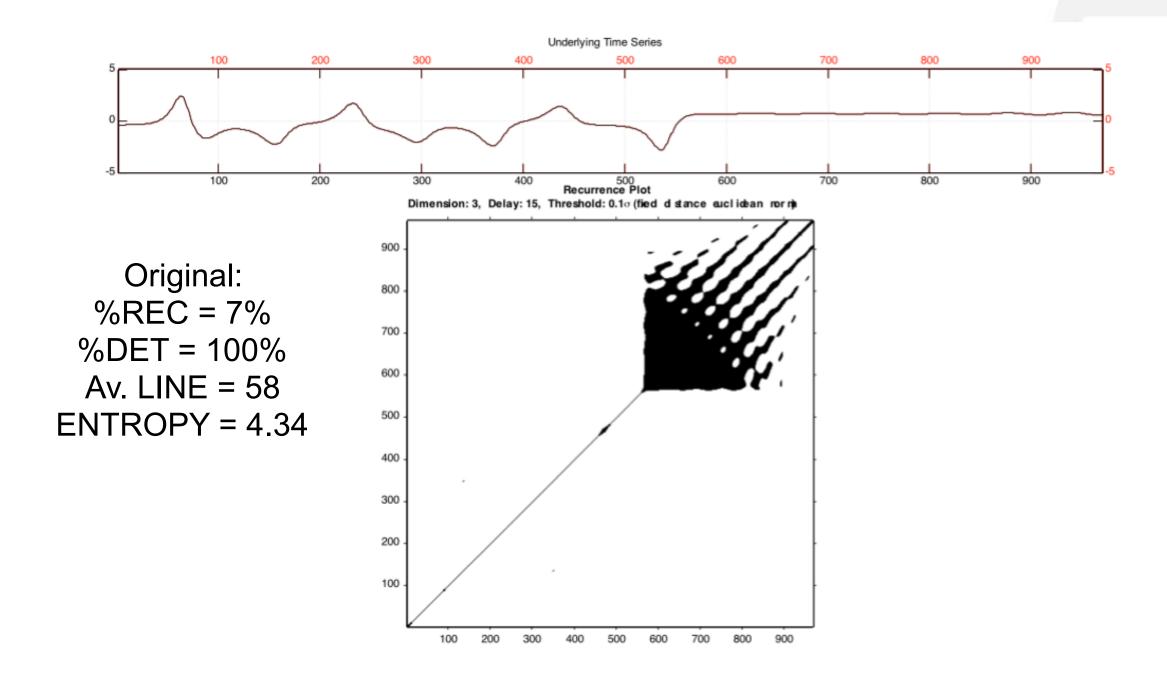


Radboud University Nijmegen

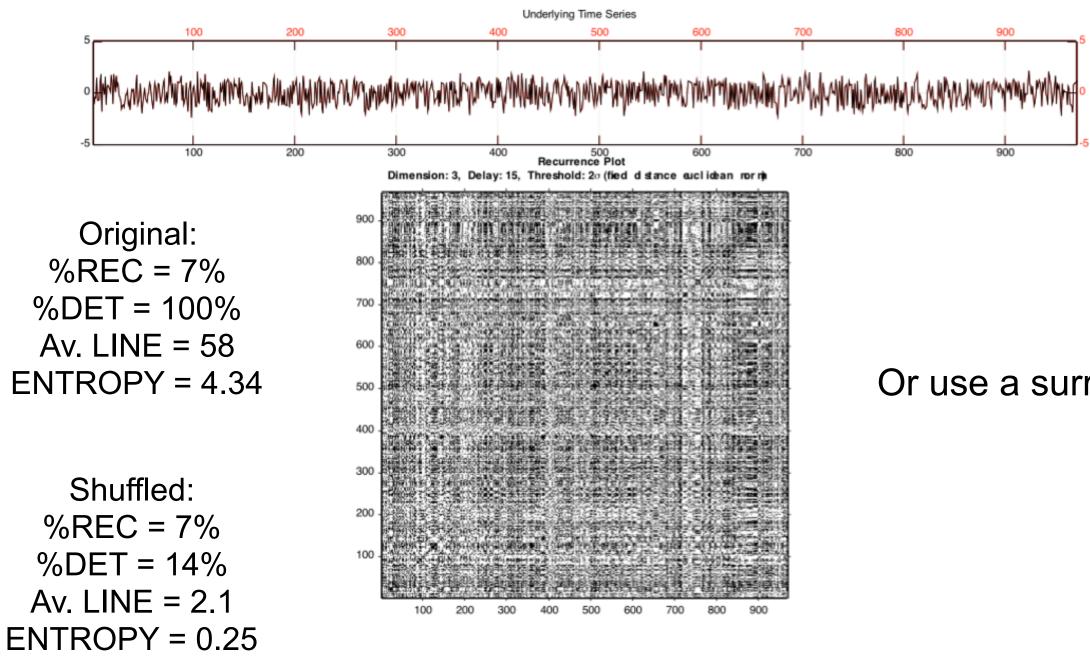
RQA measures

- %REC or RR (recurrence rate)
- %DET (is the data from a deterministic process or random?)
- MAXLINE (maximal diagonal line length)
- DIV (divergence, 1/maxline, suggested estimate of largest Lyapunov exponent)
- Average LINE (average diagonal line length)
- ENTROPY (complexity of deterministic structure)
- TREND (is the data stationary?)
- %LAM (laminarity, points on vertical lines, connected to Laminar phases)
- TT (Trapping Time, average length of vertical lines: How long the system stays in a specific state)
- Create your own...

How to decide these values have meaning?



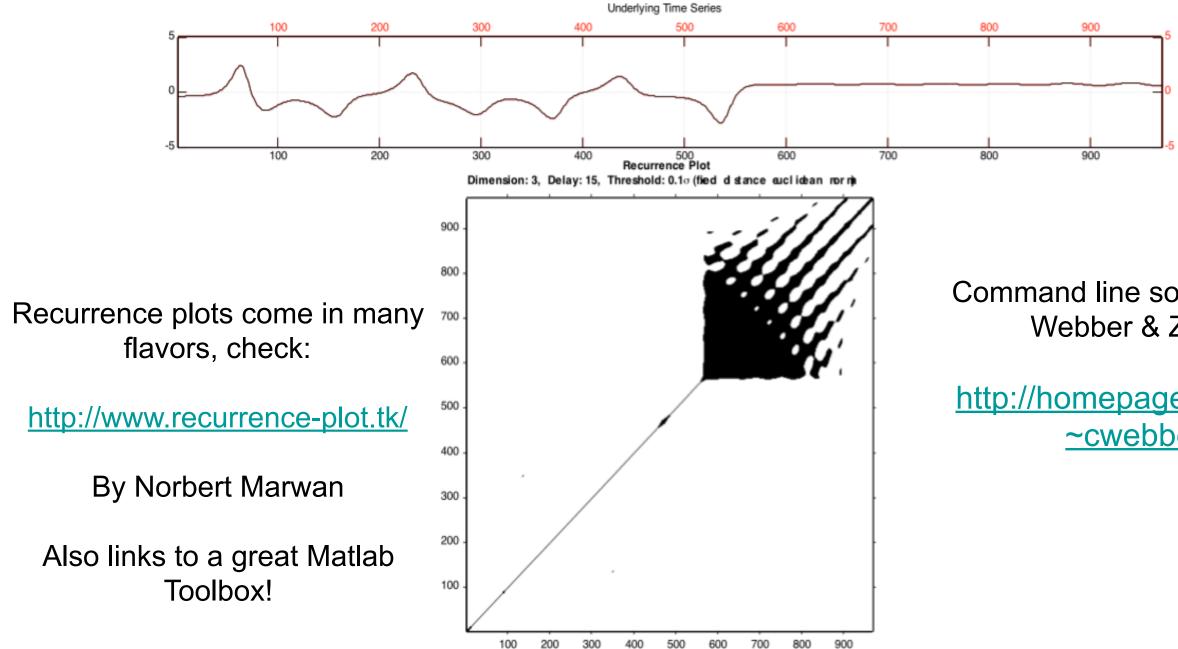
How to decide these values have meaning?



Behavioural Science Institute Radboud University Nijmegen

Or use a surrogate

Recurrence Plots - Software



Behavioural Science Institute Radboud University Nijmegen

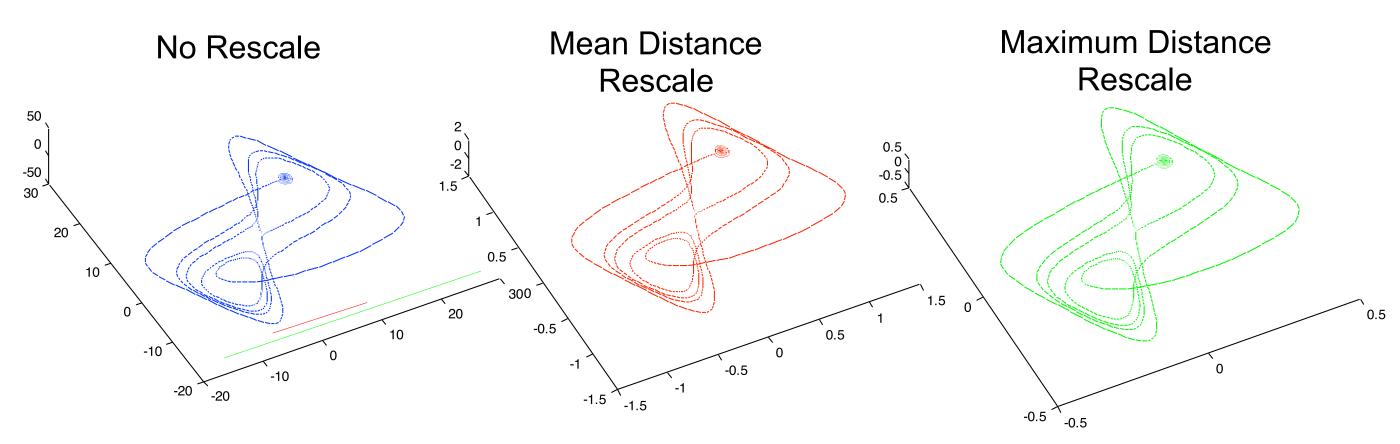
Command line software from Webber & Zbilut:

http://homepages.luc.edu/ <u>~cwebber/</u>

Data Considerations

Generally it is a good idea to re-scale your data relative to either the mean or maximum distance separating points in reconstructed phase space.

This way data is scaled to itself which allows comparisons across data sets.



Maximum distance re-scaling recommended

Webber, C.L., Jr., & Zbilut, J.P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. In: *Tutorials in contemporary* nonlinear methods for the behavioral sciences, (Chapter 2, pp. 26-94), M.A. Riley, G. Van Orden, eds. Retrieved June 5, 2007 http:// www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.pdf

General Recipe for Recurrence Quantification with toolbox:

- Decide which lag to use:

Calculate the Average Mutual Information for a range of lags (crqa_parameters). Take the lag where AMI reaches its first minimum. This is the lag at which least is known about $X(t+\tau)$ given X(t), so we can create surrogate dimensions which give most new information about the system.

- Decide which **embedding dimension** to use:

Calculate how many False Nearest Neighbours you loose by adding a dimension (crqa_parameters). Take the embedding dimension with the lowest % of nearest neighbours (or start with the dimension which gives the greatest decrease of neighbours).

- Decide which type of **rescaling** you want to use:

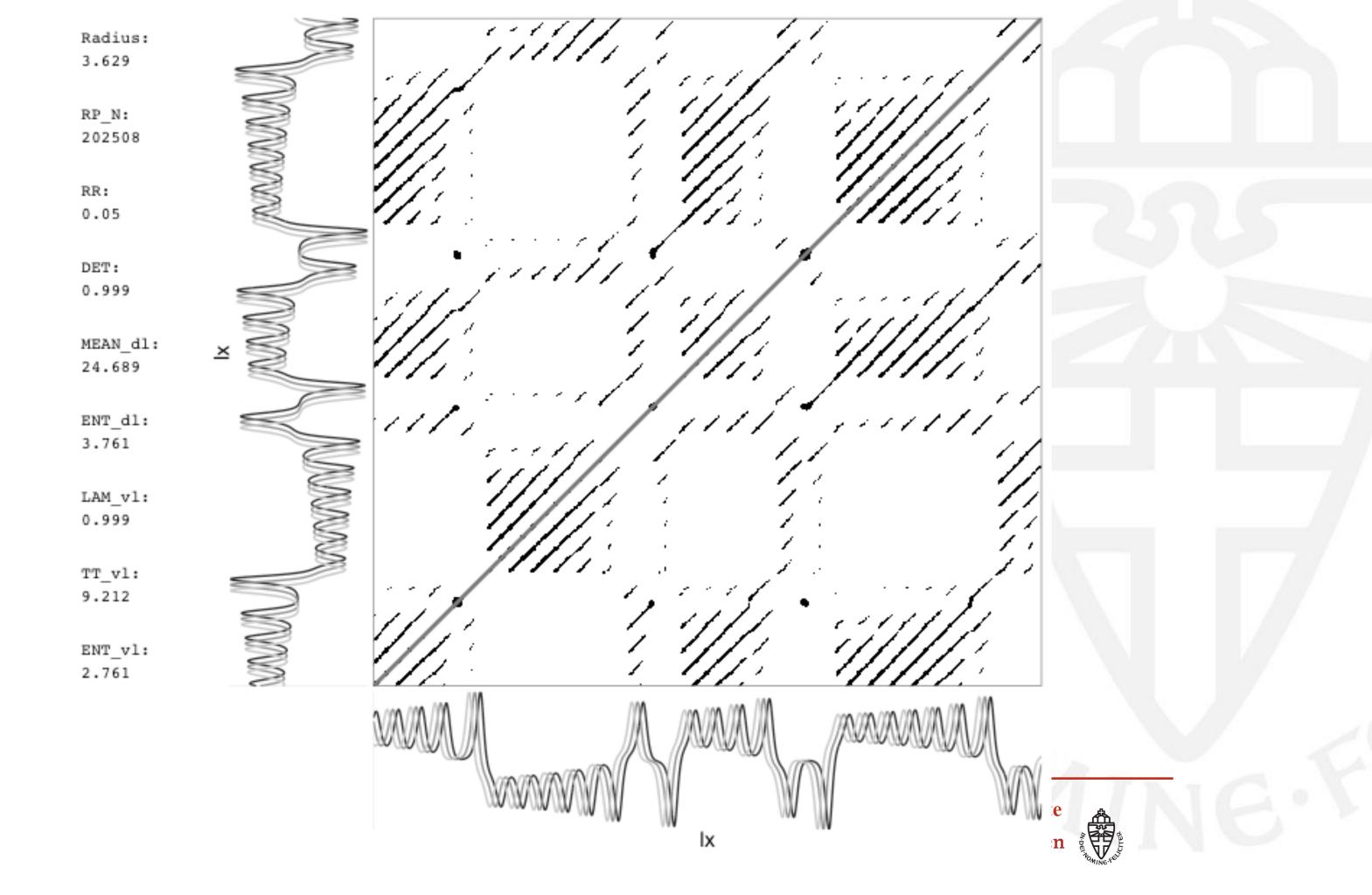
Plot your timeseries: Lots of outliers? Use Mean Distance. Otherwise: Max Distance. Calculate the max distance in reconstructed phasespace, after lag and embedding are known using max(recmat(y,emDim,emLag), divide by this value.

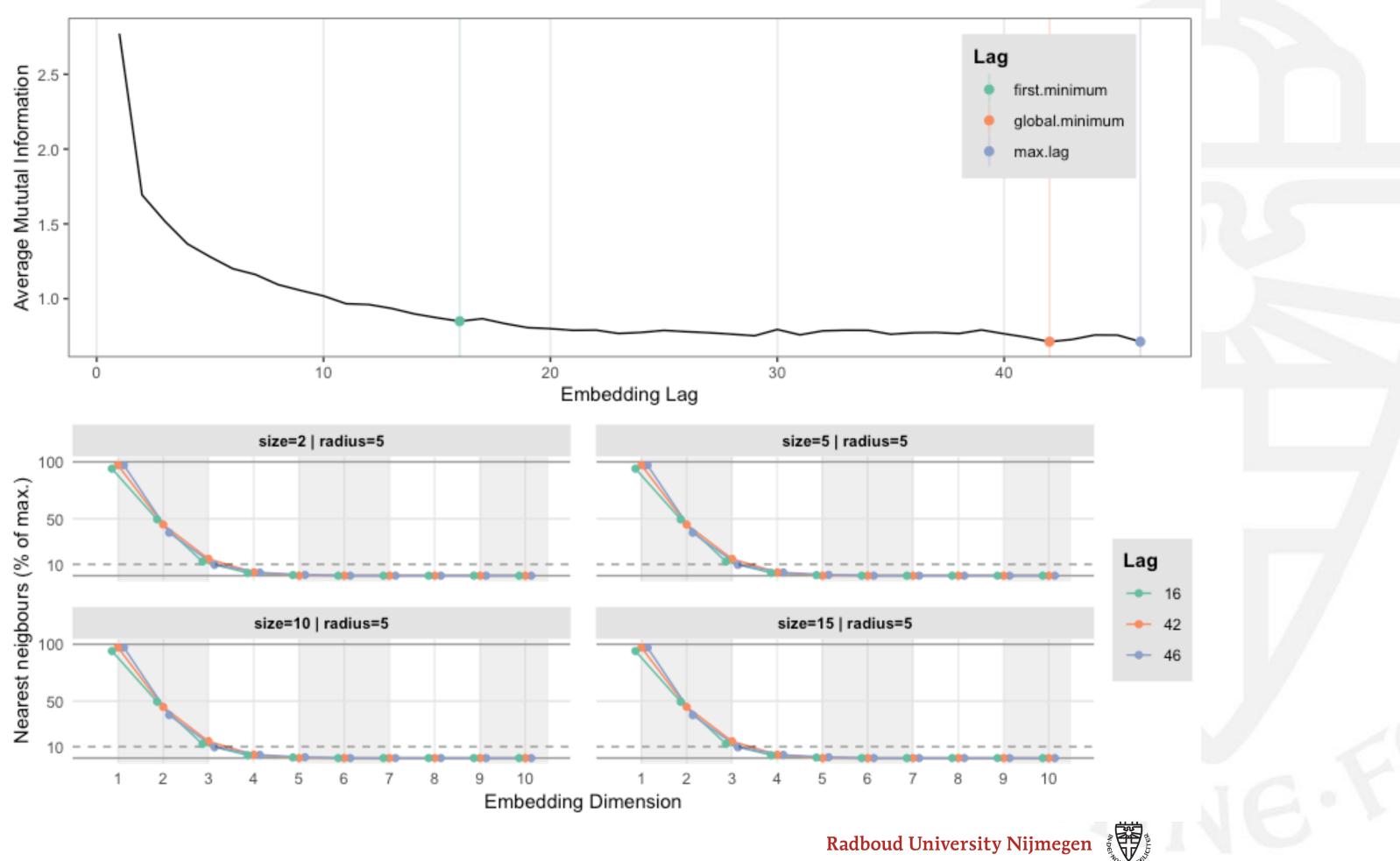
- Decide which radius / threshold to use:

-Use *rp_plot* to show unthresholded (without radius) plots use *crqa_radius* to find a radius

- Run **RQA** (*crqa cl*) with these parameters! Or use *crqa rp*

-Compare to shuffled data (*shuffle, surrogates*)





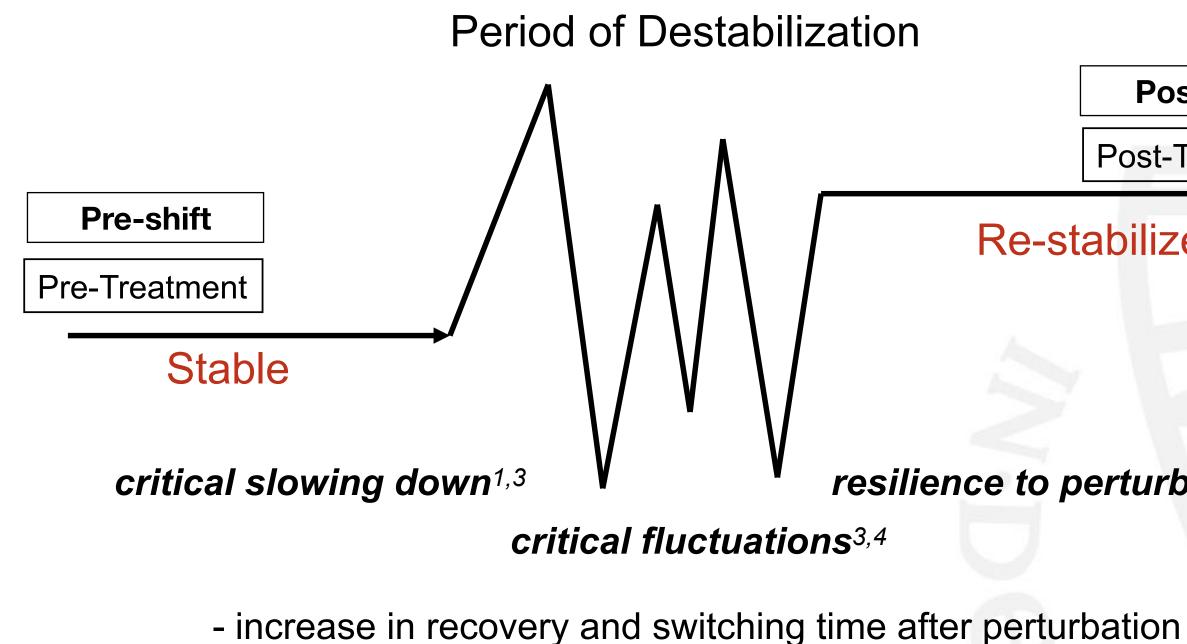
Note that:

Recurrence values will change with changes in the parameters

The safest bet for behavioural data:

- Do recurrence calculations with one set of parameters for all of your data sets.

- Then, do this again with another set of parameters and make sure the overall results pattern the same way.
- Then, you can be sure that your results are not artefacts of your parameter selection



- increase in variance, autocorrelation, long-range dependence
 - increase in occurrence and diversity of unstable states
- increase in the entropy of the distribution of state occurrences
- ¹Scholz JP, Kelso JAS, Schöner G. (1987). Nonequilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. *Physics* Letters A 123, 390–394.
- ²Scheffer M, Bascompte J, Brock W A, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G. (2009). Early-warning signals for critical transitions. Nature 461, 53-9.
- ³Stephen DG, Dixon JA, Isenhower RW. (2009). Dynamics of representational change: Entropy, Action and Cognition. JEP: Human Perception and Performance 35, 1811-1832.
- ⁴Schiepek G, Strunk G. (2010). The identification of critical fluctuations and phase transitions in short term and coarse-grained time series ... Biological cybernetics 102.197-207.

Post-shift

Post-Treatment

Re-stabilize

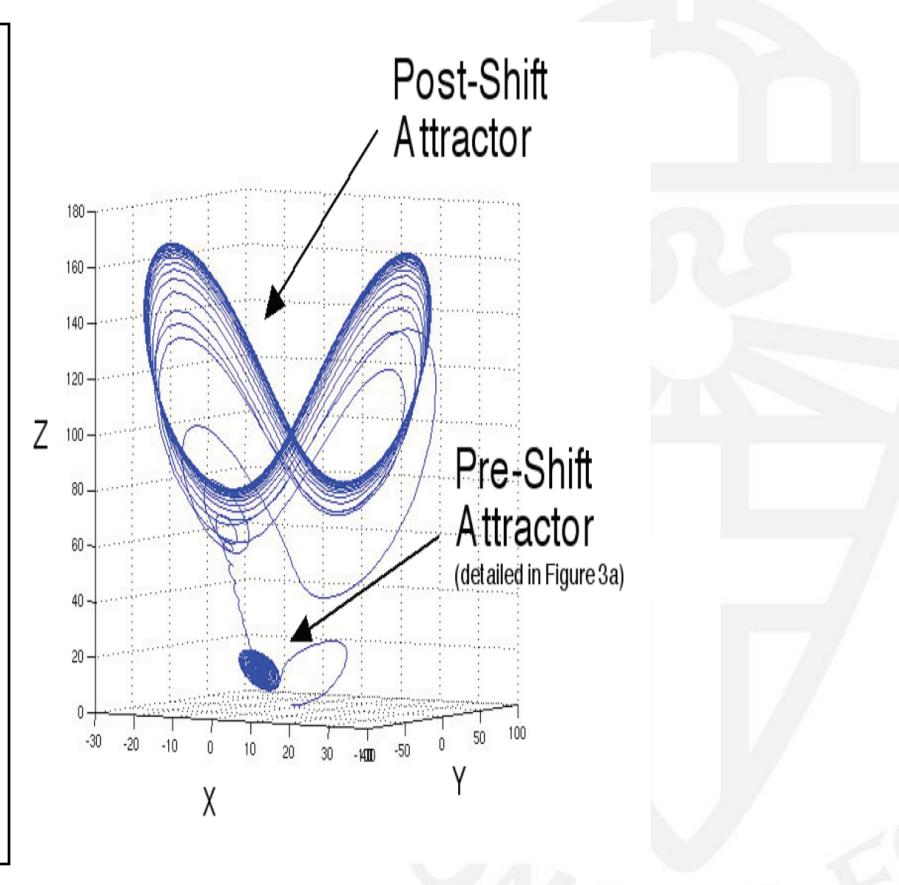
resilience to perturbation⁵

1. If we can reconstruct the state space of a complex dynamical system from one observable dimension....

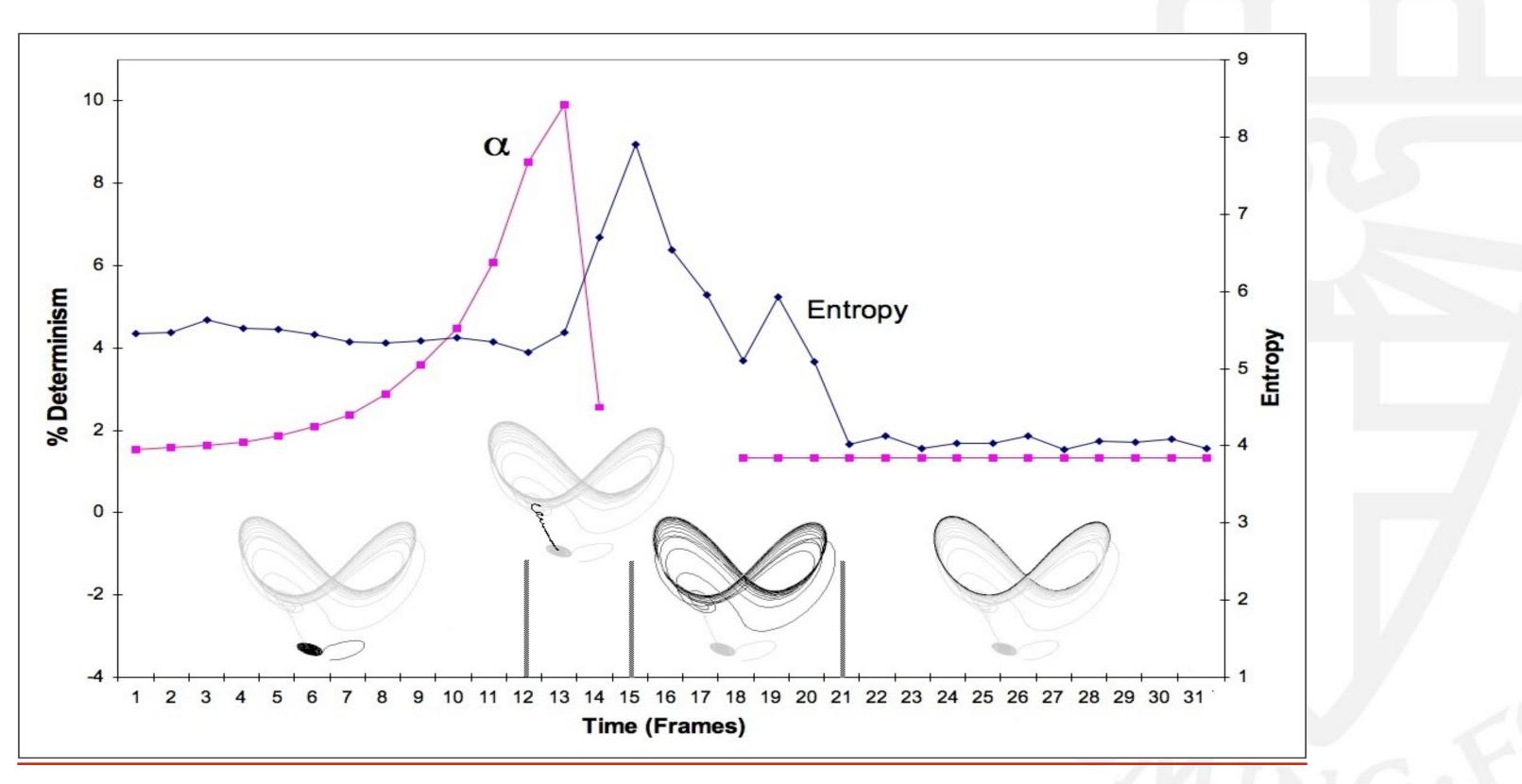
2. If we can quantify the attractor dynamics in this state space...

3. Direct measurements of physical observables in humans should tell us something about the the dynamics of the unobservable cognitive system

4. Could we predict insight in problem solving from a phase transition in phase space reconstructed from hand movements?



Lorenz system – Transitions in phase space



Insight as a phase transition

• Stephen, D.G., Dixon, J.A., & Isenhower, R.W. (2009). Dynamics of representational change: Entropy, action, and cognition. JEP: HPP.

Gear Domain

- Gear systems problems
- Solve problem any way they wish
- Code strategies
 - Force-tracing
- Gear system does not move

- Force-tracing actions create information about the system
- Discovery of Alternation

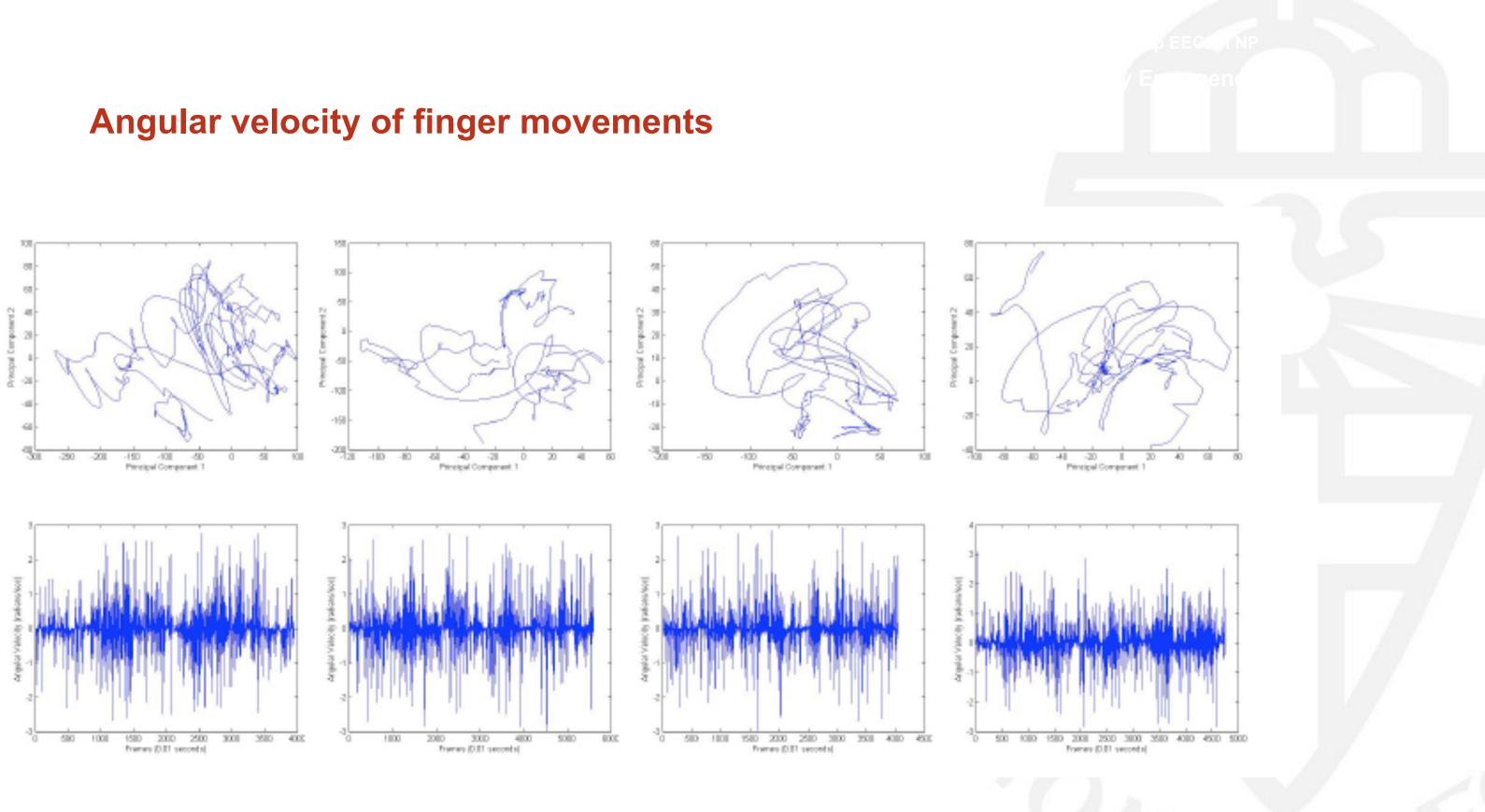
Insight as a phase transition

Optotrak

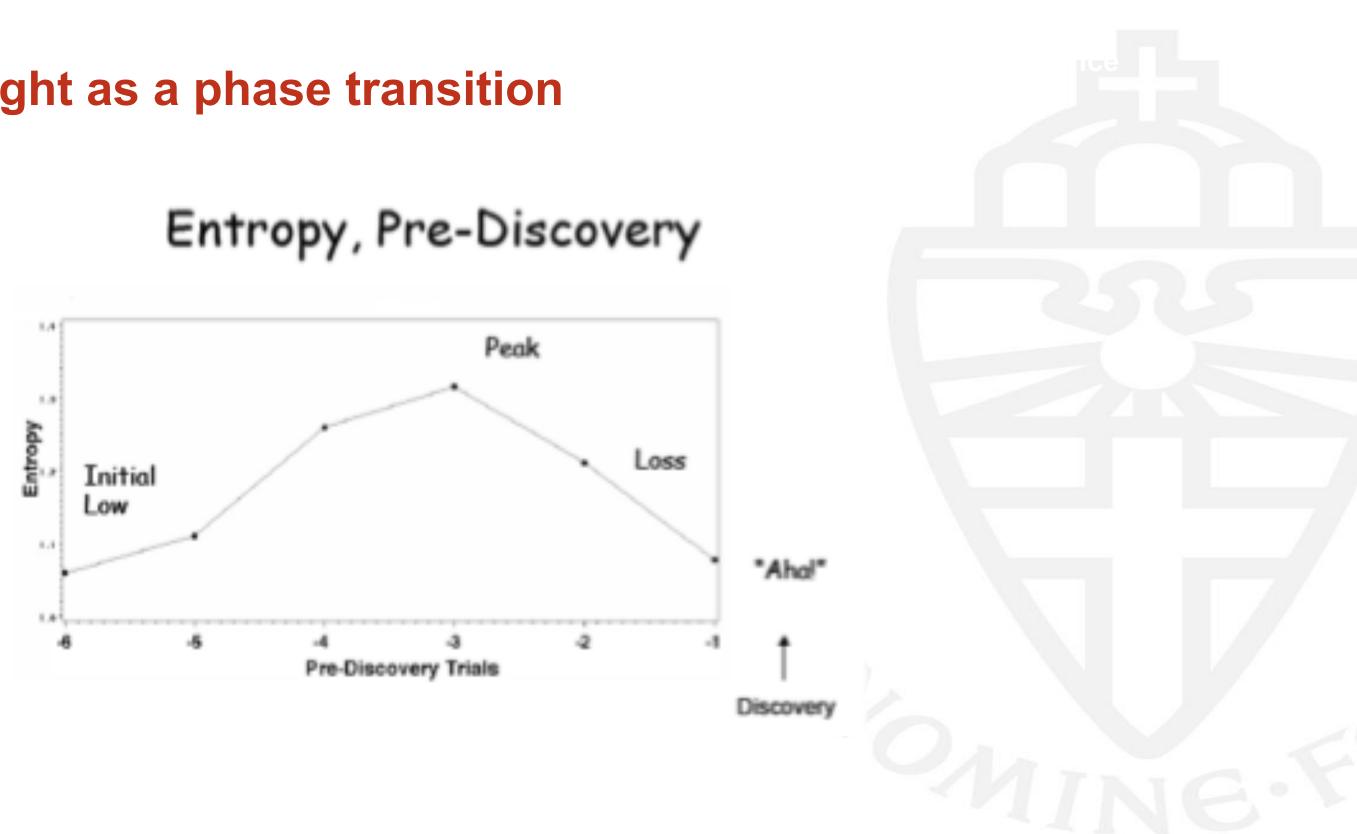
100 Hz sampling rate, 4 markers Velcro-ed to forefinger Markers emit infrared light

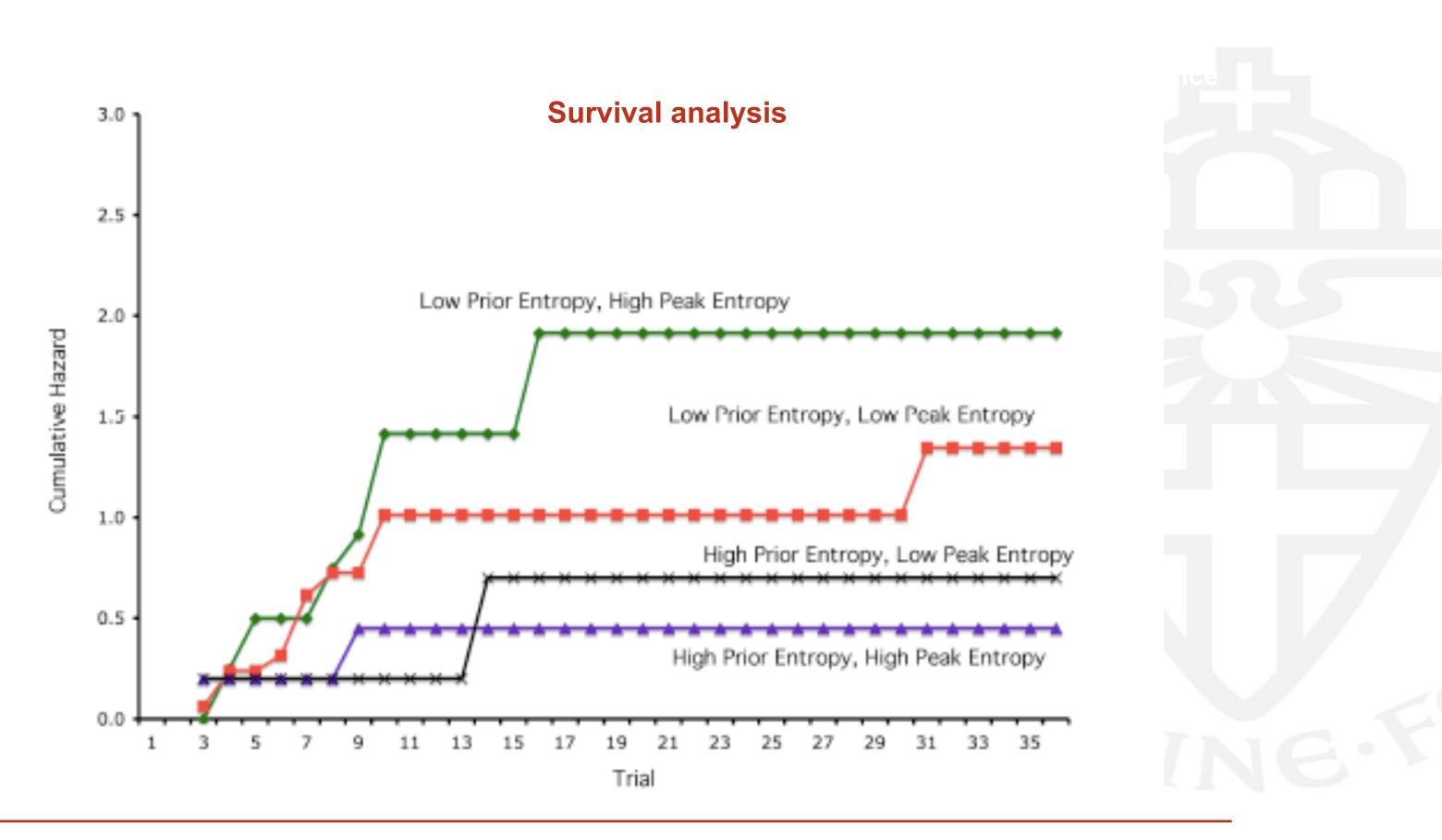


2 markers for



Insight as a phase transition





- 1. Assumption: Noise / Entropy drives the structural change
- 2. Hypothesis: Increase noise, this will lead to an earlier discovery of the rule
- 3. Additional condition: increase noise by making the gear problems shift position on the screen

