References

Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., … Hyndman, R. (2016). Rmarkdown: Dynamic documents for r. Retrieved from https://CRAN.R-project.org/package=rmarkdown
Ashby, W. R. (1945). The physical origin of adaptation by trial and error. The Journal of General Psychology, 32(1), 13–25. Journal Article. https://doi.org/10.1080/00221309.1945.10544480
Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-Organized Criticality: An Explanation of 1/f Noise. Physical Review Letters, 59(4), 381–384.
Casadevall, A., & Fang, F. C. (2016). Rigorous science: A how-to guide. mBio, 7(6). https://doi.org/10.1128/mBio.01902-16
Chan, C., & Leeper, T. J. (2016). Rio: A swiss-army knife for data i/o. Retrieved from https://CRAN.R-project.org/package=rio
Chan, I. S., & Ginsburg, G. S. (2011). Personalized medicine: Progress and promise. Annu Rev Genomics Hum Genet, 12, 217–44. https://doi.org/10.1146/annurev-genom-082410-101446
Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2016). Shiny: Web application framework for r. Retrieved from https://CRAN.R-project.org/package=shiny
Clark, A. T., Ye, H., Isbell, F., Deyle, E. R., Cowles, J., Tilman, G. D., & Sugihara, G. (2015). Spatial convergent cross mapping to detect causal relationships from short time series. Ecology, 96(5), 1174–1181. https://doi.org/10.1890/14-1479.1
Coco, M. I., & Dale, R. (2014). Cross-recurrence quantification analysis of categorical and continuous time series: An r package. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00510
Conner, T. S., Tennen, H., Fleeson, W., & Barrett, L. F. (2009). Experience sampling methods: A modern idiographic approach to personality research. Soc Personal Psychol Compass, 3(3), 292–313. Journal Article. https://doi.org/10.1111/j.1751-9004.2009.00170.x
Cox, R. F., Steen, S. van der, Guevara, M., Jonge-Hoekstra, L. de, & Dijk, M. van. (2016). Chromatic and anisotropic cross-recurrence quantification analysis of interpersonal behavior. In Recurrence plots and their quantifications: Expanding horizons (pp. 209–225). Springer.
Cramer, A. O., Borkulo, C. D. van, Giltay, E. J., Maas, H. L. van der, Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS One, 11(12), e0167490. Journal Article. https://doi.org/10.1371/journal.pone.0167490
David, S. J., Marshall, A. J., Evanovich, E. K., & Mumma, G. H. (2018). Intraindividual dynamic network analysis - implications for clinical assessment. J Psychopathol Behav Assess, 40(2), 235–248. https://doi.org/10.1007/s10862-017-9632-8
De Jonge-Hoekstra, L., Van Der Steen, S., & Cox, R. F. A. (2020). Movers and shakers of cognition: Hand movements, speech, task properties, and variability. Acta Psychologica, 211, 103187. https://doi.org/https://doi.org/10.1016/j.actpsy.2020.103187
Delignières, D., Fortes, M., Ninot, G.others. (2004). The fractal dynamics of self-esteem and physical self. Nonlinear Dynamics in Psychology and Life Sciences, 8, 479–510.
Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. EPL (Europhysics Letters), 4(9), 973.
Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134.
Gilden, D. L. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108(1), 33–56.
Goldberger, A. L., Amaral, L. a. N., Hausdorff, J. M., Ivanov, P. C., Peng, C.-K., & Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 1, 2466–72.
Gordon, M. (2016). htmlTable: Advanced tables for markdown/HTML. Retrieved from https://CRAN.R-project.org/package=htmlTable
Guastello, S. J., Koopmans, M., & Pincus, D. (2008). Chaos and complexity in psychology: The theory of nonlinear dynamical systems. Cambridge University Press. Retrieved from https://books.google.nl/books?id=6x5DAwAAQBAJ
Hekler, E. B., Klasnja, P., Chevance, G., Golaszewski, N. M., Lewis, D., & Sim, I. (2019). Why we need a small data paradigm. BMC Med, 17(1), 133. Journal Article. https://doi.org/10.1186/s12916-019-1366-x
Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (2nd ed.). Cambridge, UK: Cambridge University Press.
Kello, C. T., Brown, G. D. A., Ferrer-i-Cancho, R., Holden, J. G., Linkenkaer-Hansen, K., Rhodes, T., & Van Orden, G. C. (2010). Scaling laws in cognitive sciences. Trends in Cognitive Sciences, 14(5), 223–232.
Kelso, J. A. S. (2012). Multistability and metastability: understanding dynamic coordination in the brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1591), 906–18.
Kennel, M. B., Brown, R., & Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A, 45(6), 3403–3411. Journal Article. https://doi.org/10.1103/physreva.45.3403
LeBel, E. P., Berger, D., Campbell, L., & Loving, T. J. (2017). Falsifiability is not optional. Journal of Personality and Social Psychology, 113(2), 254–261.
Lichtwarck-Aschoff, A., Hasselman, F., Cox, R., Pepler, D., & Granic, I. (2012). A characteristic destabilization profile in parent-child interactions associated with treatment efficacy for aggressive children. Nonlinear Dynamics-Psychology and Life Sciences, 16(3), 353. Retrieved from http://devpsychopathologyru.nl/wp-content/uploads/2012/11/2012-A-characteristic-destabilization-profile-in-parent-child.pdf
Machlup, S. (1981). Earthquakes, thunderstorms and other 1/f noises. In P. H. E. Meijer, R. D. Mountain, & R. J. Soulen (Eds.), 6th international conference on noise in physical systems (Vol. 614, pp. 157–160). National Bureau of Standards, Washington, DC, Special publ. Retrieved from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication614.pdf#page=169
Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21(4), 1003–1017. Journal Article. https://doi.org/10.1142/S0218127411029008
Marwan, N., Carmen Romano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001
Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 302(5-6), 299–307.
McNally, R. J. (2019). The network takeover reaches psychopathology. Behav Brain Sci, 42, e15. https://doi.org/10.1017/S0140525X18001073
Meehl, P. E. (1967). Theory-Testing in Psychology and Physics: A Methodological Paradox. Philosophy of Science, 34(2), 103. https://doi.org/10.1086/288135
Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201–218.
Molenaar, P. C. M. (2008). On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on intra‐individual variation. Developmental Psychobiology. https://doi.org/10.1002/dev
Olthof, M., Hasselman, F., Strunk, G., Aas, B., Schiepek, G., & Lichtwarck-Aschoff, A. (2019). Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders. Psychother Res, 1–12. Journal Article. https://doi.org/10.1080/10503307.2019.1633484
Olthof, M., Hasselman, F., Strunk, G., Rooij, M. van, Aas, B., Helmich, M. A., … Lichtwarck-Aschoff, A. (2019). Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders. Clinical Psychological Science, 8(1), 25–35. Journal Article. https://doi.org/https://doi.org/10.1177/2167702619865969
Olthof, M., Hasselman, F., Wijnants, M. L., & Lichtwarck-Aschoff, A. (2020). Psychological dynamics are complex: A comparison of scaling, variance, and dynamic complexity in simulated and observed data. In K. Viol, H. Schöller, & W. Aichhorn (Eds.), Selbstorganisation – ein paradigma für die humanwissenschaften: Zu ehren von günter schiepek und seiner forschung zu komplexität und dynamik in der psychologie (pp. 303–316). Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-29906-4_17
Orden, G. C. V., Kloos, H., & Wallot, S. (2009). Living in the Pink: Intentionality , Wellbeing , and Complexity.
Pashler, H., Coburn, N., & Harris, C. R. (2012). Priming of social distance? Failure to replicate effects on social and food judgments. PLoS One, 7(8), e42510. Journal Article. https://doi.org/10.1371/journal.pone.0042510
Piccirillo, M. L., & Rodebaugh, T. L. (2019). Foundations of idiographic methods in psychology and applications for psychotherapy. Clin Psychol Rev, 71, 90–100. Journal Article. https://doi.org/10.1016/j.cpr.2019.01.002
Platt, J. R. (1964). Strong inference. Science, 146(3642), 347–353.
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008-2018 and an agenda for future research. Psychol Med, 50(3), 353–366. https://doi.org/10.1017/S0033291719003404
Rose, T. (2016). The end of average: How we succeed in a world that values sameness. Book, HarperCollins. Retrieved from https://books.google.nl/books?id=0gxXrgEACAAJ
Schiepek, G. (2003). A dynamic systems approach to clinical case formulation. European Journal of Psychological Assessment, 19(3), 175–184. Journal Article. https://doi.org/10.1027//1015-5759.19.3.175
Schiepek, G. (2009). Complexity and nonlinear dynamics in psychotherapy. European Review, 17(2), 331–356. Journal Article. https://doi.org/10.1017/s1062798709000763
Schiepek, G., Aichhorn, W., Gruber, M., Strunk, G., Bachler, E., & Aas, B. (2016). Real-time monitoring of psychotherapeutic processes: Concept and compliance. Front Psychol, 7, 604. https://doi.org/10.3389/fpsyg.2016.00604
Schiepek, G., Stöger-Schmidinger, B., Aichhorn, W., Schöller, H., & Aas, B. (2016). Systemic case formulation, individualized process monitoring, and state dynamics in a case of dissociative identity disorder. Frontiers in Psychology, 7, 1545.
Schinkel, S., Dimigen, O., & Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164(1), 45–53. https://doi.org/10.1140/epjst/e2008-00833-5
Shockley, K., Butwill, M., Zbilut, J. P., & Webber Jr, C. L. (2002). Cross recurrence quantification of coupled oscillators. Physics Letters A, 305(1-2), 59–69.
Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., & Munch, S. (2012). Detecting causality in complex ecosystems. Science, 338(6106), 496–500. https://doi.org/10.1126/science.1227079
Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand & L.-S. Young (Eds.), Dynamical systems and turbulence, warwick 1980 (Vol. 898, pp. 366–381). Springer Berlin / Heidelberg. Retrieved from http://www.springerlink.com/index/B254X77553874745.pdf http://dx.doi.org/10.1007/BFb0091924
Turvey, M. T., & Carello, C. (2012). On intelligence from first principles: Guidelines for inquiry into the hypothesis of physical intelligence (PI). Ecological Psychology, 24(1), 3–32. Journal Article. https://doi.org/10.1080/10407413.2012.645757
Urbanek, S. (2013). Png: Read and write PNG images. Retrieved from https://CRAN.R-project.org/package=png
Van Geert, P. L. C., & Fischer, K. W. (2009). Dynamic systems and the quest for individual-based models of change and development. In J. P. Spencer, M. S. C. Thomas, & J. McClelland (Eds.), Toward a new grand theory of development? Connectionism and dynamic systems theory reconsidered (pp. 313–336). Book Section, Oxford University Press.
Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2005). Human cognition and 1/f scaling. Journal of Experimental Psychology. General, 134(1), 117–23.
Vano, J., Wildenberg, J., Anderson, M., Noel, J., & Sprott, J. (2006). Chaos in low-dimensional lotka–volterra models of competition. Nonlinearity, 19(10), 2391.
Walker, E. R., & Druss, B. G. (2015). Rate and predictors of persistent major depressive disorder in a nationally representative sample. Community Mental Health Journal, 51(6), 701–707.
Wallot, S., & Leonardi, G. (2018). Analyzing multivariate dynamics using cross-recurrence quantification analysis (CRQA), diagonal-cross-recurrence profiles (DCRP), and multidimensional recurrence quantification analysis (MdRQA) a tutorial in r. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02232
Wallot, S., Roepstorff, A., & Mønster, D. (2016). Multidimensional recurrence quantification analysis (MdRQA) for the analysis of multidimensional time-series: A software implementation in MATLAB and its application to group-level data in joint action. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01835
Webber Jr, C. L., & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76(2), 965–973. Journal Article.
Wichers, M., Groot, P. C., & Psychosystems, E. S. M. G. E. W. S. G. (2016). Critical slowing down as a personalized early warning signal for depression. Psychother Psychosom, 85(2), 114–6. Journal Article. https://doi.org/10.1159/000441458
Wickham, H. (2016a). Plyr: Tools for splitting, applying and combining data. Retrieved from https://CRAN.R-project.org/package=plyr
Wickham, H. (2016b). Tidyr: Easily tidy data with ‘spread()‘ and ‘gather()‘ functions. Retrieved from https://CRAN.R-project.org/package=tidyr
Wickham, H., & Francois, R. (2016). Dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
Wickham, H.others. (2014). Tidy data. Journal of Statistical Software, 59(10), 1–23.
Wijnants, Maarten L. (2014). A review of theoretical perspectives in cognitive science on the presence of 1/f scaling in coordinated physiological and cognitive processes. Journal of Nonlinear Dynamics, 2014, 1–17. https://doi.org/10.1155/2014/962043
Wijnants, Maarten L., Bosman, A. M. T., Hasselman, F., Cox, R. F. A., & Van Orden, G. C. (2009). 1/f scaling in movement time changes with practice in precision aiming. Nonlinear Dynamics, Psychology, and Life Sciences, 13(1), 79–98.
Wijnants, M. L., Hasselman, F., Cox, R. F. A., Bosman, A. M. T., & Van Orden, G. C. (2012). An interaction-dominant perspective on reading fluency and dyslexia. Annals of Dyslexia, 62(2), 100–119.
World Health Organization. (2002). Gender and mental health. Geneva: World Health Organization.
Wright, A. G. C., & Woods, W. C. (2020). Personalized models of psychopathology. Annual Review of Clinical Psychology. Journal Article.
Xie, Y. (2016a). Bookdown: Authoring books and technical documents with r markdown. Retrieved from https://CRAN.R-project.org/package=bookdown
Xie, Y. (2016b). DT: A wrapper of the JavaScript library ’DataTables’. Retrieved from https://CRAN.R-project.org/package=DT
Xie, Y. (2016c). Knitr: A general-purpose package for dynamic report generation in r. Retrieved from https://CRAN.R-project.org/package=knitr
Ye, H., Deyle, E. R., Gilarranz, L. J., & Sugihara, G. (2015). Distinguishing time-delayed causal interactions using convergent cross mapping. Scientific Reports, 5(1). https://doi.org/10.1038/srep14750
Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., & Kurths, J. (2019). Complex network approaches to nonlinear time series analysis. Physics Reports, 787, 1–97. Journal Article. https://doi.org/10.1016/j.physrep.2018.10.005